Газификация лигнина, модифицированного кластерами железа, под действием микроволнового излучения
- Authors: Константинов Г.И.1, Манекина А.В.1, Арапова О.В.1, Чистяков А.В.1, Цодиков М.В.1
-
Affiliations:
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Issue: Vol 64, No 3 (2024)
- Pages: 232-244
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655553
- DOI: https://doi.org/10.31857/S0028242124030056
- EDN: https://elibrary.ru/LGYJJK
- ID: 655553
Cite item
Abstract
В нашей работе предлагается комплексный подход по переработке лигнина в водород или синтез-газ, включающий в себя конверсию получаемых из лигнина метана, углекислого газа и пиролизного масла под действием микроволнового излучения (МВИ). Чтобы лигнин эффективно поглощал микроволновое излучение, его пропитывали нитратом железа(III). Выход синтез-газа составил около 24%, мольное соотношение H2 : CO = 2 : 1. Для увеличения выхода водорода полученные метан, углекислый газ и пиролизное масло конвертировали в синтез-газ под воздействием МВИ. В качестве поглотителя излучения был использован карбонизованный остаток лигнина (биоуголь), способный под действием МВИ нагреваться до 900°C менее чем за одну минуту. Путем конверсии полученных из лигнина метана, углекислого газа и пиролизноого масла удалось увеличить выход водорода с 9.2 до 13.5%.
Keywords
Full Text

About the authors
Григорий Игоревич Константинов
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Author for correspondence.
Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-2579-0083
к.х.н.
Russian Federation, МоскваАлина Владимировна Манекина
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: chistyakov@ips.ac.ru
ORCID iD: 0009-0005-7679-6871
инженер
Russian Federation, МоскваОльга Владимировна Арапова
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-3397-5539
к.х.н.
Russian Federation, МоскваАндрей Валерьевич Чистяков
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-4443-7998
к.х.н.
Russian Federation, МоскваМарк Вениаминович Цодиков
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-8253-2945
д.х.н., проф.
Russian Federation, МоскваReferences
- Zhou M., Xu J., Jiang J., Sharm B.K. A review of microwave assisted liquefaction of lignin in hydrogen donor solvents: effect of solvents and catalysts // Energies. 2018. V. 11. № 11. P. 2877–2932. https://doi.org/10.3390/en11112877
- Roy R., Rahman M.S., Amit T.A., Jadhav B. Recent advances in lignin depolymerization techniques: A comparative overview of traditional and greener approaches // Biomass. 2022. V. 2. № 3. P. 130–154. https://doi.org/10.3390/biomass2030009
- Roy R., Jadhav B., Rahman M.S., Raynie D.E. Characterization of residue from catalytic hydrothermal depolymerization of lignin // Curr. Res. Green Sustain. Chem. 2021. V. 4. P. 100052–100083. https://doi.org/10.1016/j.crgsc.2020.100052
- Huang B.S., Chen H.Y., Chuang K.H., Yang R.X., Wey M.Y. Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an Fe/CaO catalyst // Int. J. Hydrog. Energy. 2012. V. 37. № 8. P. 6511–6518. https://doi.org/10.1016/j.ijhydene.2012.01.071
- Jara-Cobos L., Abril-González M., Pinos-Vélez V. Production of Hydrogen from Lignocellulosic Biomass: A Review of Technologies // Catalysts. 2023. V. 13. № 4. P. 766–804. https://doi.org/10.3390/catal1304076
- Tarabanko V.E. Catalytic conversion of lignins for valuable chemicals // Catalysts. 2021. V. 11. № 10. P. 1254–1256. https://doi.org/10.3390/catal11101254
- Zhao M., Zhao L., Zhao X.Y., Cao J.P., Maruyama K.I. Pd-Based nano-catalysts promote biomass lignin conversion into value-added chemicals // Materials. 2023. V. 16. № 14. P. 5198–5216. https://doi.org/10.3390/ma16145198
- Echresh Zadeh Z., Abdulkhani A., Saha B. Characterization of fast pyrolysis bio-oil from hardwood and softwood lignin // Energies. 2020. V. 13. № 4. P. 887–908. https://doi.org/10.3390/en13040887
- Zadeh Z.E., Abdulkhani A., Aboelazayem O., Saha B. Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment, characterization, and products upgrading // Processes. 2020. V. 8. № 7. P. 799–820. https://doi.org/10.3390/pr8070799
- Machado H., Cristino A.F., Orišková S., Galhano dos Santos R. Bio-oil: the next-generation source of chemicals // Reactions. 2022. V. 3. № 1. P. 118–137. https://doi.org/10.3390/reactions3010009
- Dorn L., Thirion A., Ghorbani M., Olaechea L.M., Mayer I. Exploring fully biobased adhesives: sustainable kraft lignin and 5-hmf adhesive for particleboards // Polymers. 2023. V. 15. № 12. ID 2668. https://doi.org/10.3390/polym15122668
- Blasi A., Verardi A., Lopresto C.G., Siciliano S., Sangiorgio P. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview // Recycling. 2023. V. 8. № 4. P. 61–80. https://doi.org/10.3390/recycling8040061
- de Morais L.C., Maia A.A.D., Yamaji F.M., Viana S.R.F., Resende P. Energy analysis of sugarcane bagasse after enzymatic catalysis process // Biomass Conversion and Biorefinery. 2020. P. 1–15. https://doi.org/10.1007/s13399-020-01097-y
- Ambat I., Srivastava V., Sillanpää M. Recent advancement in biodiesel production methodologies using various feedstock: A review // Renew. Sustain. Energ. Rev. 2018. V. 90. P. 356–369. https://doi.org/10.1016/j.rser.2018.03.069
- Mishra K., Siwal S.S., Saini A.K., Thakur V.K. Recent update on gasification and pyrolysis processes of lignocellulosic and algal biomass for hydrogen production // Fuel. 2023. V. 332. P. 126169–126180. https://doi.org/10.1016/j.fuel.2022.126169
- Lepage T., Kammoun M., Schmetz Q., Richel A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment // Biomass and Bioenergy. 2021. V. 144. P. 105920–15939. https://doi.org/10.1016/j.biombioe.2020.105920
- Blanquet E., Williams P.T. Biomass pyrolysis coupled with non-thermal plasma/catalysis for hydrogen production: Influence of biomass components and catalyst properties // J. Anal. Appl. Pyrolysis. 2021. V. 159. P. 105325–105346. https://doi.org/10.1016/j.jaap.2021.105325
- Inayat A., Tariq R., Khan Z., Ghenai C., Kamil M., Jamil F., Shanableh A. A comprehensive review on advanced thermochemical processes for bio-hydrogen production via microwave and plasma technologies // Biomass Conversion and Biorefinery. 2020. P. 1–10. https://doi.org/10.1007/s13399-020-01175-1
- Long N.V.D., Kim G.S., Tran N.N., Lee D.Y., Fulcheri L., Song Z., Hessel V.l. Biogas upgrading using ionic liquidBmim][PF6] followed by thermal-plasma-assisted renewable hydrogen and solid carbon production // Int. J. Hydrog. Energy. 2022. V. 47. № 100. P. 42075–42083. https://doi.org/10.1016/j.ijhydene.2021.08.231
- Makavana J.M., Kalaiya S.V., Dulawat M.S., Sarsavadiya P.N., Chauhan P.M. Development and performance evaluation of batch type biomass pyrolyser for agricultural residue // Biomass Conversion and Biorefinery. 2020. P. 1–8. https://doi.org/10.1007/s13399-020-01105-1
- Pang S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals // Biotechnol. Adv. 2019. V. 37. № 4. P. 589–597. https://doi.org/10.1016/j.biotechadv.2018.11.004
- Saidi M., Gohari M.H., Ramezani A.T. Hydrogen production from waste gasification followed by membrane filtration: a review // Env. Chem. Lett. 2020. V. 18. P. 1529–1556. https://doi.org/10.1007/s10311-020-01030-9
- Gao Y., Remón J., Matharu A.S. Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review // Green Chem. 2021. V. 23. № 10. P. 3502–3525. https://doi.org/10.1039/D1GC00623A
- Gaudino E.C., Cravotto G., Manzoli M., Tabasso S. From waste biomass to chemicals and energy via microwave-assisted processes // Green Chem. 2019. V. 21. № 6. P. 1202–1235. https://doi.org/10.1039/C8GC03908A
- Elhambakhsh A., Long N.V.D., Lamichhane P., Hessel V. Recent progress and future directions in plasma-assisted biomass conversion to hydrogen // Renew. Energ. 2023. V. 218. ID 119307. https://doi.org/10.1016/j.renene.2023.119307
- Tsodikov M.V., Bukhtenko O.V., Naumkin A.V., Nikolaev S.A., Chistyakov A.V., Konstantinov G.I. Activity and structure of nano-sized cobalt-containing systems for the conversion of lignin and fuel oil to synthesis gas and hydrocarbons in a microwave-assisted plasma catalytic process // Catalysts. 2022. V. 12. I. 11. ID 1315. https://doi.org/10.3390/catal12111315
- Tsodikov M., Ellertb O.G., Nikolaev S.A., Arapova O.V., Konstantinov G.I., Bukhtenko O.V., Vasil’kov A.Yu. The role of nanosized nickel particles in microwave-assisted dry reforming of lignin // Chem. Eng. J. 2017. V. 309. P. 628–637. https://doi.org/10.1016/j.cej.2016.10.031
- Gęsikiewicz-Puchalska A., Zgrzebnicki M., Michalkiewicz B., Kałamaga A., Narkiewicz U., Morawski A.W., Wrobel R. Changes in porous parameters of the ion exchanged X zeolite and their effect on CO2 adsorption // Molecules. 2021. V. 26. № 24. ID 7520. https://doi.org/10.3390/molecules26247520
- Gildernew E., Tareq S., Yang S. Three-Dimensional graphene with preserved channeling as a binder additive for zeolite 13X for enhanced thermal conductivity, vapor transport, and vapor adsorption loading kinetics // Catalysts. 2022. V. 12. № 3. ID 292. https://doi.org/10.3390/catal12030292
- Besser B., Tajiri H.A., Mikolajczyk G., Möllmer J., Schumacher T.C., Odenbach S., Rezwan K. Hierarchical porous zeolite structures for pressure swing adsorption applications // ACS Appl. Mat. 2016. V. 8. № 5. P. 3277–3286. https://doi.org/10.1021/acsami.5b11120
- Rahat S.S.M., Hasan K.M.Z., Mondol M.M.H., Mallik A.K. A comprehensive review of carbon nanotube-based metal oxide nanocomposites for supercapacitors // J. Energy Storage. 2023. V. 73. ID 108847. https://doi.org/10.1016/j.est.2023.108847
- Yuan X., Dissanayake P.D., Gao B., Liu W.J., Lee K.B., Ok Y.S. Review on upgrading organic waste to value-added carbon materials for energy and environmental applications // J. Environ. Manage. 2021. V. 296. ID 113128. https://doi.org/10.1016/j.jenvman.2021.113128
- Aldosari M.A., Othman A.A., Alsharaeh E.H. Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation // Molecules. 2013. V. 18. № 3. P. 3152–3167. https://doi.org/10.3390/molecules18033152
- Zheng W., Ye W., Yang P., Wang D., Xiong Y., Liu Z., Jindong Qi, Zhang Y. Recent progress in iron-based microwave absorbing composites: A review and prospective // Molecules. 2022. V. 27. № 13. P. 4117. https://doi.org/10.3390/molecules27134117
- Zhang D., Deng Y., Han C., Zhu H., Yan C., Zhang H. Enhanced microwave absorption bandwidth in graphene-encapsulated iron nanoparticles with core–shell structure // Nanomaterials. 2020. V. 10. № 5. P. 931–955. https://doi.org/10.3390/nano10050931
- García-Baños B., Catalá-Civera J.M., Sánchez J.R., Navarrete L., López-Buendía A.M., Schmidt L. High temperature dielectric properties of iron- and zinc-bearing products during carbothermic reduction by microwave heating // Metals. 2020. V. 10. № 5. P. 693–708. https://doi.org/10.3390/met10050693
- Miguel M.G., Lourenço J.P., Faleiro M.L. Superparamagnetic iron oxide nanoparticles and essential oils: a new tool for biological applications // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 6633–6654. https://doi.org/10.3390/ijms21186633
- Fernández-Barahona I., Muñoz-Hernando M., Herranz F. Microwave-driven synthesis of iron-oxide nanoparticles for molecular imaging // Molecules. 2019. V. 24. № 7. P. 1224–1245. https://doi.org/10.3390/molecules24071224
- Sarimov R.M., Nagaev E.I., Matveyeva T.A., Binhi V.N., Burmistrov D.E., Serov D.A., Astashev M.E., Simakin A.V., Uvarov O.V., Khabatova V.V., Akopdzhanov A.G., Schimanowskii N.L., Gudkov S.V. Investigation of aggregation and disaggregation of self-assembling nano-sized clusters consisting of individual iron oxide nanoparticles upon interaction with HEWL protein molecules // Nanomaterials. 2022. V. 12. № 22. ID 3960. https://doi.org/10.3390/nano12223960
- Palniandy L.K., Yoon L.W., Wong W.Y., Yong S.T., Pang M.M. Application of biochar derived from different types of biomass and treatment methods as a fuel source for direct carbon fuel cells // Energies. 2019. V. 12. № 13. ID 2477. https://doi.org/10.3390/en12132477
- Alazaiza M.Y., Albahnasawi A., Eyvaz M., Al Maskari T., Nassani D.E., Abu Amr S.S., Bashir M.J. An overview of green bioprocessing of algae-derived biochar and biopolymers: synthesis, preparation, and potential applications // Energies. 2023. V. 16. № 2. P. 79–100. https://doi.org/10.3390/en16020791
- Rivelli A.R., Libutti A. Effect of biochar and inorganic or organic fertilizer Co-application on soil properties, plant growth and nutrient content in Swiss chard // Agronomy. 2022. V. 12. № 9. P. 2089–2110. https://doi.org/10.3390/agronomy12092089
- Yadav R., Ramakrishna W. Biochar as an environment-friendly alternative for multiple applications // Sustainability. 2023. V. 15. № 18. ID 13421. https://doi.org/10.3390/su151813421
Supplementary files
