Газификация лигнина, модифицированного кластерами железа, под действием микроволнового излучения

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В нашей работе предлагается комплексный подход по переработке лигнина в водород или синтез-газ, включающий в себя конверсию получаемых из лигнина метана, углекислого газа и пиролизного масла под действием микроволнового излучения (МВИ). Чтобы лигнин эффективно поглощал микроволновое излучение, его пропитывали нитратом железа(III). Выход синтез-газа составил около 24%, мольное соотношение H2 : CO = 2 : 1. Для увеличения выхода водорода полученные метан, углекислый газ и пиролизное масло конвертировали в синтез-газ под воздействием МВИ. В качестве поглотителя излучения был использован карбонизованный остаток лигнина (биоуголь), способный под действием МВИ нагреваться до 900°C менее чем за одну минуту. Путем конверсии полученных из лигнина метана, углекислого газа и пиролизноого масла удалось увеличить выход водорода с 9.2 до 13.5%.

Full Text

Restricted Access

About the authors

Григорий Игоревич Константинов

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Author for correspondence.
Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-2579-0083

к.х.н.

Russian Federation, Москва

Алина Владимировна Манекина

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: chistyakov@ips.ac.ru
ORCID iD: 0009-0005-7679-6871

инженер

Russian Federation, Москва

Ольга Владимировна Арапова

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-3397-5539

к.х.н.

Russian Federation, Москва

Андрей Валерьевич Чистяков

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-4443-7998

к.х.н.

Russian Federation, Москва

Марк Вениаминович Цодиков

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-8253-2945

д.х.н., проф.

Russian Federation, Москва

References

  1. Zhou M., Xu J., Jiang J., Sharm B.K. A review of microwave assisted liquefaction of lignin in hydrogen donor solvents: effect of solvents and catalysts // Energies. 2018. V. 11. № 11. P. 2877–2932. https://doi.org/10.3390/en11112877
  2. Roy R., Rahman M.S., Amit T.A., Jadhav B. Recent advances in lignin depolymerization techniques: A comparative overview of traditional and greener approaches // Biomass. 2022. V. 2. № 3. P. 130–154. https://doi.org/10.3390/biomass2030009
  3. Roy R., Jadhav B., Rahman M.S., Raynie D.E. Characterization of residue from catalytic hydrothermal depolymerization of lignin // Curr. Res. Green Sustain. Chem. 2021. V. 4. P. 100052–100083. https://doi.org/10.1016/j.crgsc.2020.100052
  4. Huang B.S., Chen H.Y., Chuang K.H., Yang R.X., Wey M.Y. Hydrogen production by biomass gasification in a fluidized-bed reactor promoted by an Fe/CaO catalyst // Int. J. Hydrog. Energy. 2012. V. 37. № 8. P. 6511–6518. https://doi.org/10.1016/j.ijhydene.2012.01.071
  5. Jara-Cobos L., Abril-González M., Pinos-Vélez V. Production of Hydrogen from Lignocellulosic Biomass: A Review of Technologies // Catalysts. 2023. V. 13. № 4. P. 766–804. https://doi.org/10.3390/catal1304076
  6. Tarabanko V.E. Catalytic conversion of lignins for valuable chemicals // Catalysts. 2021. V. 11. № 10. P. 1254–1256. https://doi.org/10.3390/catal11101254
  7. Zhao M., Zhao L., Zhao X.Y., Cao J.P., Maruyama K.I. Pd-Based nano-catalysts promote biomass lignin conversion into value-added chemicals // Materials. 2023. V. 16. № 14. P. 5198–5216. https://doi.org/10.3390/ma16145198
  8. Echresh Zadeh Z., Abdulkhani A., Saha B. Characterization of fast pyrolysis bio-oil from hardwood and softwood lignin // Energies. 2020. V. 13. № 4. P. 887–908. https://doi.org/10.3390/en13040887
  9. Zadeh Z.E., Abdulkhani A., Aboelazayem O., Saha B. Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment, characterization, and products upgrading // Processes. 2020. V. 8. № 7. P. 799–820. https://doi.org/10.3390/pr8070799
  10. Machado H., Cristino A.F., Orišková S., Galhano dos Santos R. Bio-oil: the next-generation source of chemicals // Reactions. 2022. V. 3. № 1. P. 118–137. https://doi.org/10.3390/reactions3010009
  11. Dorn L., Thirion A., Ghorbani M., Olaechea L.M., Mayer I. Exploring fully biobased adhesives: sustainable kraft lignin and 5-hmf adhesive for particleboards // Polymers. 2023. V. 15. № 12. ID 2668. https://doi.org/10.3390/polym15122668
  12. Blasi A., Verardi A., Lopresto C.G., Siciliano S., Sangiorgio P. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview // Recycling. 2023. V. 8. № 4. P. 61–80. https://doi.org/10.3390/recycling8040061
  13. de Morais L.C., Maia A.A.D., Yamaji F.M., Viana S.R.F., Resende P. Energy analysis of sugarcane bagasse after enzymatic catalysis process // Biomass Conversion and Biorefinery. 2020. P. 1–15. https://doi.org/10.1007/s13399-020-01097-y
  14. Ambat I., Srivastava V., Sillanpää M. Recent advancement in biodiesel production methodologies using various feedstock: A review // Renew. Sustain. Energ. Rev. 2018. V. 90. P. 356–369. https://doi.org/10.1016/j.rser.2018.03.069
  15. Mishra K., Siwal S.S., Saini A.K., Thakur V.K. Recent update on gasification and pyrolysis processes of lignocellulosic and algal biomass for hydrogen production // Fuel. 2023. V. 332. P. 126169–126180. https://doi.org/10.1016/j.fuel.2022.126169
  16. Lepage T., Kammoun M., Schmetz Q., Richel A. Biomass-to-hydrogen: A review of main routes production, processes evaluation and techno-economical assessment // Biomass and Bioenergy. 2021. V. 144. P. 105920–15939. https://doi.org/10.1016/j.biombioe.2020.105920
  17. Blanquet E., Williams P.T. Biomass pyrolysis coupled with non-thermal plasma/catalysis for hydrogen production: Influence of biomass components and catalyst properties // J. Anal. Appl. Pyrolysis. 2021. V. 159. P. 105325–105346. https://doi.org/10.1016/j.jaap.2021.105325
  18. Inayat A., Tariq R., Khan Z., Ghenai C., Kamil M., Jamil F., Shanableh A. A comprehensive review on advanced thermochemical processes for bio-hydrogen production via microwave and plasma technologies // Biomass Conversion and Biorefinery. 2020. P. 1–10. https://doi.org/10.1007/s13399-020-01175-1
  19. Long N.V.D., Kim G.S., Tran N.N., Lee D.Y., Fulcheri L., Song Z., Hessel V.l. Biogas upgrading using ionic liquidBmim][PF6] followed by thermal-plasma-assisted renewable hydrogen and solid carbon production // Int. J. Hydrog. Energy. 2022. V. 47. № 100. P. 42075–42083. https://doi.org/10.1016/j.ijhydene.2021.08.231
  20. Makavana J.M., Kalaiya S.V., Dulawat M.S., Sarsavadiya P.N., Chauhan P.M. Development and performance evaluation of batch type biomass pyrolyser for agricultural residue // Biomass Conversion and Biorefinery. 2020. P. 1–8. https://doi.org/10.1007/s13399-020-01105-1
  21. Pang S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals // Biotechnol. Adv. 2019. V. 37. № 4. P. 589–597. https://doi.org/10.1016/j.biotechadv.2018.11.004
  22. Saidi M., Gohari M.H., Ramezani A.T. Hydrogen production from waste gasification followed by membrane filtration: a review // Env. Chem. Lett. 2020. V. 18. P. 1529–1556. https://doi.org/10.1007/s10311-020-01030-9
  23. Gao Y., Remón J., Matharu A.S. Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review // Green Chem. 2021. V. 23. № 10. P. 3502–3525. https://doi.org/10.1039/D1GC00623A
  24. Gaudino E.C., Cravotto G., Manzoli M., Tabasso S. From waste biomass to chemicals and energy via microwave-assisted processes // Green Chem. 2019. V. 21. № 6. P. 1202–1235. https://doi.org/10.1039/C8GC03908A
  25. Elhambakhsh A., Long N.V.D., Lamichhane P., Hessel V. Recent progress and future directions in plasma-assisted biomass conversion to hydrogen // Renew. Energ. 2023. V. 218. ID 119307. https://doi.org/10.1016/j.renene.2023.119307
  26. Tsodikov M.V., Bukhtenko O.V., Naumkin A.V., Nikolaev S.A., Chistyakov A.V., Konstantinov G.I. Activity and structure of nano-sized cobalt-containing systems for the conversion of lignin and fuel oil to synthesis gas and hydrocarbons in a microwave-assisted plasma catalytic process // Catalysts. 2022. V. 12. I. 11. ID 1315. https://doi.org/10.3390/catal12111315
  27. Tsodikov M., Ellertb O.G., Nikolaev S.A., Arapova O.V., Konstantinov G.I., Bukhtenko O.V., Vasil’kov A.Yu. The role of nanosized nickel particles in microwave-assisted dry reforming of lignin // Chem. Eng. J. 2017. V. 309. P. 628–637. https://doi.org/10.1016/j.cej.2016.10.031
  28. Gęsikiewicz-Puchalska A., Zgrzebnicki M., Michalkiewicz B., Kałamaga A., Narkiewicz U., Morawski A.W., Wrobel R. Changes in porous parameters of the ion exchanged X zeolite and their effect on CO2 adsorption // Molecules. 2021. V. 26. № 24. ID 7520. https://doi.org/10.3390/molecules26247520
  29. Gildernew E., Tareq S., Yang S. Three-Dimensional graphene with preserved channeling as a binder additive for zeolite 13X for enhanced thermal conductivity, vapor transport, and vapor adsorption loading kinetics // Catalysts. 2022. V. 12. № 3. ID 292. https://doi.org/10.3390/catal12030292
  30. Besser B., Tajiri H.A., Mikolajczyk G., Möllmer J., Schumacher T.C., Odenbach S., Rezwan K. Hierarchical porous zeolite structures for pressure swing adsorption applications // ACS Appl. Mat. 2016. V. 8. № 5. P. 3277–3286. https://doi.org/10.1021/acsami.5b11120
  31. Rahat S.S.M., Hasan K.M.Z., Mondol M.M.H., Mallik A.K. A comprehensive review of carbon nanotube-based metal oxide nanocomposites for supercapacitors // J. Energy Storage. 2023. V. 73. ID 108847. https://doi.org/10.1016/j.est.2023.108847
  32. Yuan X., Dissanayake P.D., Gao B., Liu W.J., Lee K.B., Ok Y.S. Review on upgrading organic waste to value-added carbon materials for energy and environmental applications // J. Environ. Manage. 2021. V. 296. ID 113128. https://doi.org/10.1016/j.jenvman.2021.113128
  33. Aldosari M.A., Othman A.A., Alsharaeh E.H. Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation // Molecules. 2013. V. 18. № 3. P. 3152–3167. https://doi.org/10.3390/molecules18033152
  34. Zheng W., Ye W., Yang P., Wang D., Xiong Y., Liu Z., Jindong Qi, Zhang Y. Recent progress in iron-based microwave absorbing composites: A review and prospective // Molecules. 2022. V. 27. № 13. P. 4117. https://doi.org/10.3390/molecules27134117
  35. Zhang D., Deng Y., Han C., Zhu H., Yan C., Zhang H. Enhanced microwave absorption bandwidth in graphene-encapsulated iron nanoparticles with core–shell structure // Nanomaterials. 2020. V. 10. № 5. P. 931–955. https://doi.org/10.3390/nano10050931
  36. García-Baños B., Catalá-Civera J.M., Sánchez J.R., Navarrete L., López-Buendía A.M., Schmidt L. High temperature dielectric properties of iron- and zinc-bearing products during carbothermic reduction by microwave heating // Metals. 2020. V. 10. № 5. P. 693–708. https://doi.org/10.3390/met10050693
  37. Miguel M.G., Lourenço J.P., Faleiro M.L. Superparamagnetic iron oxide nanoparticles and essential oils: a new tool for biological applications // Int. J. Mol. Sci. 2020. V. 21. № 18. P. 6633–6654. https://doi.org/10.3390/ijms21186633
  38. Fernández-Barahona I., Muñoz-Hernando M., Herranz F. Microwave-driven synthesis of iron-oxide nanoparticles for molecular imaging // Molecules. 2019. V. 24. № 7. P. 1224–1245. https://doi.org/10.3390/molecules24071224
  39. Sarimov R.M., Nagaev E.I., Matveyeva T.A., Binhi V.N., Burmistrov D.E., Serov D.A., Astashev M.E., Simakin A.V., Uvarov O.V., Khabatova V.V., Akopdzhanov A.G., Schimanowskii N.L., Gudkov S.V. Investigation of aggregation and disaggregation of self-assembling nano-sized clusters consisting of individual iron oxide nanoparticles upon interaction with HEWL protein molecules // Nanomaterials. 2022. V. 12. № 22. ID 3960. https://doi.org/10.3390/nano12223960
  40. Palniandy L.K., Yoon L.W., Wong W.Y., Yong S.T., Pang M.M. Application of biochar derived from different types of biomass and treatment methods as a fuel source for direct carbon fuel cells // Energies. 2019. V. 12. № 13. ID 2477. https://doi.org/10.3390/en12132477
  41. Alazaiza M.Y., Albahnasawi A., Eyvaz M., Al Maskari T., Nassani D.E., Abu Amr S.S., Bashir M.J. An overview of green bioprocessing of algae-derived biochar and biopolymers: synthesis, preparation, and potential applications // Energies. 2023. V. 16. № 2. P. 79–100. https://doi.org/10.3390/en16020791
  42. Rivelli A.R., Libutti A. Effect of biochar and inorganic or organic fertilizer Co-application on soil properties, plant growth and nutrient content in Swiss chard // Agronomy. 2022. V. 12. № 9. P. 2089–2110. https://doi.org/10.3390/agronomy12092089
  43. Yadav R., Ramakrishna W. Biochar as an environment-friendly alternative for multiple applications // Sustainability. 2023. V. 15. № 18. ID 13421. https://doi.org/10.3390/su151813421

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental setup: 1 - magnetron control unit, 2 - waveguide, 3 - quartz reactor, 4 - thermocouple, 5 - U-shaped vessel for absorption of residual MBI, 6 - gas flow regulator, 7 - deflegmator, 8 - thermometer, 9 - Libich refrigerator, 10 - chromatograph, 11 - PC, 12 - cylinder with carrier gas for chromatograph, 13 - sampler for liquid products

Download (101KB)
3. Fig. 2. Curve of the reaction zone temperature variation when lignin impregnated with iron nitrate is exposed to microwave radiation

Download (72KB)
4. Fig. 3. IR spectra of lignin before and after MBI treatment

Download (133KB)
5. Fig. 4. Mössbauer spectrum of biochar after 60 min of MBI at T = 300 K

Download (64KB)
6. Fig. 5. Temperature profiles of biochar heating under different exposure times

Download (75KB)
7. Fig. 6. Dependence of the composition of the gas leaving the reactor on the time of the experiment. Initial mixture: 43 vol.% methane and 57 vol.% carbon dioxide, reactor temperature 800°C, catalyst - biochar (stage 3)

Download (121KB)
8. Fig. 7. Dependence of pyrolysis oil conversion and hydrogen yield on the mass ratio of biochar and pyrolysis oil loaded into the reactor

Download (106KB)

Copyright (c) 2024 Russian Academy of Sciences