Современные достижения в области каталитической переработки лигнинсодержащей биомассы в ценные химические продукты (обзор)
- Authors: Дементьева О.С.1, Арапова О.В.1, Наранов Е.Р.1
-
Affiliations:
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Issue: Vol 64, No 2 (2024)
- Pages: 99–125
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655557
- DOI: https://doi.org/10.31857/S0028242124020015
- EDN: https://elibrary.ru/NDUECW
- ID: 655557
Cite item
Abstract
Рассмотрены проблемы переработки биомассы растительного происхождения, связанные с получением компонентов топлив и химикатов. Особое внимание уделено работам, связанным с применением альтернативных компонентов каталитических систем, внедрением новых экологически чистых материалов, которые улучшают качество получаемых с их использованием химических соединений. Подробно обсуждаются процессы пиролиза (в т.ч. каталитического пиролиза) и гидродезоксигенации кислородсодержащих полимеров биомассы.
Keywords
Full Text

About the authors
Оксана Сергеевна Дементьева
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: naranov@ips.ac.ru
ORCID iD: 0000-0001-6801-0158
к. х. н., н. с.
Russian Federation, 199091, МоскваОльга Владимировна Арапова
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: naranov@ips.ac.ru
ORCID iD: 0000-0001-9963-6305
к. х. н., н. с.
Russian Federation, 199091, МоскваЕвгений Русланович Наранов
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Author for correspondence.
Email: naranov@ips.ac.ru
ORCID iD: 0000-0002-3815-9565
к. х. н., с. н. с.
Russian Federation, 199091, МоскваReferences
- Tinwala F., Mohanty P., Parmar S., Patel A., Pant K.K. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: product yields and its characterization // Bioresour. Technol. 2015. V. 188. P. 258–264. https://doi.org/10.1016/J.BIORTECH.2015.02.006
- Liang J., Shan G., Sun Y. Catalytic fast pyrolysis of lignocellulosic biomass: critical role of zeolite catalysts. // Renewable and sustainable. Energy reviews. 2021. V. 139. ID 110707. https://doi.org/10.1016/J.RSER.2021.110707
- Yue Y., Singh H., Singh B., Mani S. Torrefaction of sorghum biomass to improve fuel properties // Bioresour. Technol. 2017. V. 232. P. 372–379. https://doi.org/10.1016/J.BIORTECH.2017.02.060
- Puig-Arnavat M., Shang L., Sárossy Z., Ahrenfeldt J., Henriksen U.B. From a single pellet press to a bench scale pellet mill – Pelletizing six different biomass feedstocks // Fuel Processing Technology. 2016. V. 142. P. 27–33. https://doi.org/10.1016/J.FUPROC.2015.09.022
- Spencer Dale. BP Energy Outlook 2023 edition. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf (25.01.2024).
- Mirkouei A., Haapala K.R., Sessions J., Murthy G.S. A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: a multi-criteria decision making framework. // Appl. Energy. 2017. V. 206. P. 1088–1101. https://doi.org/10.1016/J.APENERGY.2017.09.001
- Gaitán-Álvarez J., Moya R., Puente-Urbina A., Rodriguez-Zúñiga A. Thermogravimetric, devolatilization rate, and differential scanning calorimetry analyses of biomass of tropical plantation species of Costa Rica torrefied at different temperatures and times // Energies. 2018. V. 11. № 4. P. 696–715. https://doi.org/10.3390/EN11040696
- Tripathi M., Sahu J.N., Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review // Renewable and Sustainable. Energy Reviews. 2016. V. 55. P. 467–481. https://doi.org/10.1016/J.RSER.2015.10.122
- Demirbaş A., Arin G. An overview of biomass pyrolysis // Energy Sources. 2002. V. 24. № 5. P. 471–482. https://doi.org/10.1080/00908310252889979
- Luo G., Eng R.J., Jia P., Resende F.L.P. Ablative pyrolysis of wood chips: effect of operating conditions // Energy Technology. 2017. V. 5. № 11. P. 2128–2137. https://doi.org/10.1002/ENTE.201700211
- Madhu P., Kanagasabapathy H., Manickam I.N. Flash pyrolysis of palmyra palm (Borassus flabellifer) using an electrically heated fluidized bed reactor // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2016. V. 38. № 12. P. 1699–1705. https://doi.org/10.1080/15567036.2014.956192
- Dhyani V., Bhaskar T. A comprehensive review on the pyrolysis of lignocellulosic biomass // Renew Energy. 2018. V. 129. P. 695–716. https://doi.org/10.1016/J.RENENE.2017.04.035
- Bustan M.D., Haryati S., Hadiah F., Selpiana S., Huda A. Syngas production improvement of sugarcane bagasse conversion using an electromagnetic modified vacuum pyrolysis reactor // Processes. 2020. V. 8. № 2. P. 252. https://doi.org/10.3390/PR8020252
- Tan S., Zhou G., Yang Q., Ge Sh., Liu J., Cheng Y.W., Yek P.N.Y., Mahari W.A.W., Kong S.H., Chang J.Sh., Sonne Ch., Chong W.W.F., Lam S.Sh. Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: a review. Science of The Total Environment. 2023. V. 864. ID 160990. https://doi.org/10.1016/J.SCITOTENV.2022.160990
- Liu J., Huang S., Chen K., Wang T., Mei M., Li J. Preparation of biochar from food waste digestate: pyrolysis behavior and product properties // Bioresour Technol. 2020. V. 302. ID 122841. https://doi.org/10.1016/J.BIORTECH.2020.122841
- Fan Y., Zhang D., Zheng A., Zhao Z., Li H., Yang T. Selective production of anhydrosugars and furfural from fast pyrolysis of corncobs using sulfuric acid as an inhibitor and catalyst // Chemical Engineering Journal. 2019. V. 358. P. 743–751. https://doi.org/10.1016/J.CEJ.2018.10.014
- Zhang Y., Yuan Z., Hu B., Deng J., Yao Q., Zhang X., Liu X., Fu Y., Lu Q. Direct conversion of cellulose and raw biomass to acetonitrile by catalytic fast pyrolysis in ammonia // Green Chemistry. 2019. V. 21. № 4. P. 812–820. https://doi.org/10.1039/C8GC03354D
- Sangaré D., Moscosa-Santillan M., Bostyn S., Belandria V., Martínez A.D.C., Van De Steene L. Multi-step kinetic mechanism coupled with CFD modeling of slow pyrolysis of biomass at different heating rates // Chemical Engineering J. 2024. V. 479. ID 147791. https://doi.org/10.1016/J.CEJ.2023.147791
- Shell Catalysts & Technologies. Biomass to Fuels: IH2 Commercial Process Optimisation. https://www.shell.com/. Available: https://www.shell.com.cn/en_cn/business-customers/catalysts-technologies/licensed-technologies/benefits-of-biofuels/ih2-technology/process-optimisation.html#iframe=L2Jpb21hc3MtdG8tZnVlbHMtZm9ybQ (09.05.2024).
- Patel A., Agrawal B., Rawal B.R. Pyrolysis of biomass for efficient extraction of biofuel // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020. V. 42. № 13. P. 1649–1661. https://doi.org/10.1080/15567036.2019.1604875
- Chen L., Yang K., Huang J., Liu P., Yang J., Pan Y., Qi F., Jia L. Experimental and kinetic study on flash pyrolysis of biomass via on-line photoionization mass spectrometry // Applications in Energy and Combustion Science. 2022. V. 9. ID 100057. https://doi.org/10.1016/J.JAECS.2022.100057
- Vutolkina A.V., Baigildin I.G., Glotov A.P., Pimerzin Al.A., Akopyan A.V., Maximov A.L., Karakhanov E.A. Hydrodeoxygenation of guaiacol via in situ H2 generated through a water gas shift reaction over dispersed NiMoS catalysts from oil-soluble precursors: tuning the selectivity towards cyclohexene // Appl. Catal. B. 2022. V. 312. ID 121403. https://doi.org/10.1016/J.APCATB.2022.121403
- Aysu T. Catalytic pyrolysis of Eremurus spectabilis for bio-oil production in a fixed-bed reactor: effects of pyrolysis parameters on product yields and character // Fuel Processing Technology. 2015. V. 129. P. 24–38. https://doi.org/10.1016/J.FUPROC.2014.08.014
- Lyu G., Wu S., Zhang H. Estimation and comparison of bio-oil components from different pyrolysis conditions // Front. Energy Res. 2015. V. 3. ID 137763. https://doi.org/10.3389/FENRG.2015.00028
- Bartoli M., Rosi L., Giovannelli A., Frediani P., Frediani M. Production of bio-oils and bio-char from Arundo donax through microwave assisted pyrolysis in a multimode batch reactor // J. Anal. Appl. Pyrolysis. 2016. V. 122. P. 479–489. https://doi.org/10.1016/J.JAAP.2016.10.016
- Sahoo D., Awasthi A., Dhyani V., Biswas B., Kumar J., Reddy Y.S., Adarsh V.P., Puthiyamadam A., Mallapureddy K.K., Sukumaran R.K., Ummalyma S.B., Bhaskar T. Value-addition of water hyacinth and para grass through pyrolysis and hydrothermal liquefaction // Carbon Resources Conversion. 2019. V. 2. № 3. P. 233–241. https://doi.org/10.1016/J.CRCON.2019.08.001
- Kojima Y., Kato Y., Akazawa M., Yoon S.L., Lee M.K. Pyrolysis characteristic of kenaf studied with separated tissues, alkali pulp, and alkali li // Biofuel Research J. 2015. V. 2. № 4. P. 317–323. https://doi.org/10.18331/BRJ2015.2.4.6
- Weldekidan H., Strezov V., He J., Kumar R., Asumadu-Sarkodie S., Doyi I.N.Y., Jahan S., Kan T., Town G. Energy conversion efficiency of pyrolysis of chicken litter and rice Husk Biomass // Energy & Fuels. 2019. V. 33. № 7. P. 6509–6514. https://doi.org/10.1021/ACS.ENERGYFUELS.9B01264
- Setter C., Borges F.A., Cardoso C.R., Mendes R.F., Oliveira T.J.P. Energy quality of pellets produced from coffee residue: characterization of the products obtained via slow pyrolysis // Ind. Crops. Prod. 2020. V. 154. ID 112731. https://doi.org/10.1016/J.INDCROP.2020.112731
- Adamczyk M., Sajdak M. Pyrolysis behaviours of microalgae Nannochloropsis gaditana // Waste Biomass Valorization. 2018. V. 9. № 11. P. 2221–2235. https://doi.org/10.1007/S12649-017-9996-8/FIGURES/9
- Максимов А.Л., Винокуров В.А. Биорефайнинг: Переработка биосырья в топливо и продукты основного органического синтеза. Т. 1. М.: Изд. центр РГУ нефти и газа имени И.М. Губкина, 2019. 239 с.
- Oudenhoven S.R.G., van der Ham A.G.J., van den Berg H., Westerhof R.J.M., Kersten S.R.A. Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: process design and economic evaluation // Biomass Bioenergy. 2016. V. 95. P. 388–404. https://doi.org/10.1016/j.biombioe.2016.07.003
- Wang S., Dai G., Yang H., Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review // Prog. Energy Combust. Sci. 2017. V. 62. P. 33–86. https://doi.org/10.1016/J.PECS.2017.05.004
- Anwar Z., Gulfraz M., Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review // J. Radiat. Res. Appl. Sci. 2014. V. 7. № 2. P. 163–173. https://doi.org/10.1016/J.JRRAS.2014.02.003
- Liu W.J., Li W.W., Jiang H., Yu H.Q. Fates of chemical elements in biomass during its pyrolysis // Chem. Rev. 2017. V. 117. № 9. P. 6367–6398. https://doi.org/10.1021/acs.chemrev.6b00647
- G. Wang., Dai Y., Haiping Y., Xiong Q., Wang K., Zhou J., Li Y., Wang S. A review of recent advances in biomass pyrolysis // Energy and Fuels. 2020. V. 34. № 12. P. 15557–15578. https://doi.org/10.1021/acs.energyfuels.0c03107
- Omoriyekomwan J.E., Tahmasebi A., Dou J., Wang R., Yu J. A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass // Fuel Processing Technology. 2021. V. 214. ID 106686. https://doi.org/10.1016/J.FUPROC.2020.106686
- Hassan H., Lim J.K., Hameed B.H. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil // Bioresour. Technol. 2016. V. 221. P. 645–655. https://doi.org/10.1016/J.BIORTECH.2016.09.026
- Kumar R., Strezov V., Weldekidan H., He J., Singh S., Kan T., Dastjerdi B. Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels // Renewable and Sustainable Energy Reviews. 2020. V. 123. ID 109763. https://doi.org/10.1016/J.RSER.2020.109763
- Mohammed I.Y., Abakr Y.A., Kazi F.K., Yusuf S. Effects of pretreatments of Napier grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics // Waste Biomass Valorization. 2017. V. 8. № 3. P. 755–773. https://doi.org/10.1007/S12649-016-9594-1
- Zhang M., We M.Y.-S. L.Sh., Wu H. Direct emulsification of crude glycerol and bio-oil without addition of surfactant via ultrasound and mechanical agitation // Fuel. 2018. V. 227. P. 183–189. https://doi.org/10.1016/J.FUEL.2018.04.099
- Li H., Xia S., Ma P. Upgrading fast pyrolysis oil: solvent–anti-solvent extraction and blending with diesel // Energy Convers. Manag. 2016. V. 110. P. 378–385. https://doi.org/10.1016/J.ENCONMAN.2015.11.043
- Hu X., Gholizadeh M. Progress of the applications of bio-oil // Renewable and Sustainable Energy Reviews. 2020. V. 134. P. 110124. https://doi.org/10.1016/J.RSER.2020.110124
- Verevkin S.P., Pimerzin A.A., Glotov A.P., Vutolkina A.V. Biofuels energetics: reconciliation of calorific values of fatty acids methyl esters with help of complementary measurements and structure–property relationships // Fuel. 2022. V. 329. ID 125460. https://doi.org/10.1016/J.FUEL.2022.125460
- Verevkin S.P., Pimerzin A.A., Glotov A.P., Vutolkina A.V. Biofuels energetics: measurements and evaluation of calorific values of triglycerides // Fuel. 2022. V. 326. ID 125101. https://doi.org/10.1016/J.FUEL.2022.125101
- Yang Z., Kumar A., Huhnke R.L. Review of recent developments to improve storage and transportation stability of bio-oil // Renewable and Sustainable Energy Reviews. 2015. V. 50. P. 859–870. https://doi.org/10.1016/J.RSER.2015.05.025
- Zacher A.H., Olarte M.V., Santosa D.M., Elliott D.C., Jones S.B. A review and perspective of recent bio-oil hydrotreating research // Green Chemistry. 2014. V. 16. № 2. P. 491–515. https://doi.org/10.1039/C3GC41382A
- Hossain A.K., Davies P.A., Pyrolysis liquids and gases as alternative fuels in internal combustion engines – a review // Renewable and Sustainable Energy Reviews. 2013. V. 21. P. 165–189. https://doi.org/10.1016/J.RSER.2012.12.031
- Liu R., Sarker M., Rahman Md.M., Li C., Chai M., Nishu, Cotillon R., Scott N.R. Multi-scale complexities of solid acid catalysts in the catalytic fast pyrolysis of biomass for bio-oil production – a review // Prog. Energy Combust. Sci. 2020. V. 80. ID 100852. https://doi.org/10.1016/J.PECS.2020.100852
- Su J., Li T., Luo G., Zhang Y., Naranov E.R., Wang K. Co-hydropyrolysis of pine and HDPE over bimetallic catalysts: efficient BTEX production and process mechanism analysis // Fuel Processing Technology. 2023. V. 249. ID 107845. https://doi.org/10.1016/J.FUPROC.2023.107845
- Stummann M. Z., Høj M., Gabrielsen J., Clausen L.R., Jensen P.A., Jensen A.D. A perspective on catalytic hydropyrolysis of biomass // Renewable and Sustainable Energy Reviews. 2021. V. 143. P. 110960. https://doi.org/10.1016/J.RSER.2021.110960
- Ennaert T., Van Aelst J., Dijkmans J., Clercq R.D., Schutyser W., Dusselier M., Verboekend D., Sels B.F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass // Chem. Soc. Rev. 2016. V. 45. V 3. P. 584–611. https://doi.org/10.1039/C5CS00859J
- Chen X., Che Q., Li Sh., Liu Z., Yang H., Chen Y., Wang X., Shao J., Chen H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield // Fuel Processing Technology. 2019. V. 196. ID 106180. https://doi.org/10.1016/J.FUPROC.2019.106180
- Bhoi P.R., Ouedraogo A.S., Soloiu V., Quirino R. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis // Renewable and Sustainable Energy Reviews. 2020. V. 121. P. 109676. https://doi.org/10.1016/J.RSER.2019.109676
- Kabir G., Hameed B.H. Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals // Renewable and Sustainable Energy Reviews. 2017. V. 70. P. 945–967. https://doi.org/10.1016/J.RSER.2016.12.001
- Wang J., Xu Ch., Zhong Z., Deng A., Hao N., Li M., Meng X., Ragauskas A.J. Catalytic Conversion of Bamboo sawdust over ZrO2–CeO2/γ-Al2O3 to produce ketonic hydrocarbon precursors and furans // ACS Sustain. Chem. Eng. 2018. V. 6. № 11. P. 13797–13806. https://doi.org/10.1021/ACSSUSCHEMENG.8B01873
- Ding K., Zhong Zh., Wang J., Zhang B., Fan L., Liu Sh., Wang Y., Liu Y., Zhong D., Chen P., Ruan R. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5 // Bioresour. Technol. 2018. V. 261. P. 86–92. https://doi.org/10.1016/J.BIORTECH.2018.03.138
- Hernando H., Moreno I., Fermoso J., Ochoa-Hernández C., Pizarro P., Coronado J.M., Čejka J., Serrano D.P. Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides // Biomass Convers. Biorefin. 2017. V. 7. № 3. P. 289–304. https://doi.org/10.1007/S13399-017-0266-6/FIGURES/10
- Che Q., Yang M., Wang X., Chen X., Chen W., Yang Q., Yang H., Chen H. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust // Fuel Processing Technology. 2019. V. 188. P. 146–152. https://doi.org/10.1016/J.FUPROC.2019.02.016
- Zhang X., Yuan Z., Yao Q., Zhang Y., Fu Y. Catalytic fast pyrolysis of corn cob in ammonia with Ga/HZSM-5 catalyst for selective production of acetonitrile // Bioresour. Technol. 2019. V. 290. ID 121800. https://doi.org/10.1016/J.BIORTECH.2019.121800
- Xu L., Yao Q., Zhang Y., Fu Y. Integrated production of aromatic amines and N-doped carbon from lignin via ex situ catalytic fast pyrolysis in the presence of ammonia over zeolites // ACS Sustain. Chem. Eng. 2017. V. 5. № 4. P. 2960–2969. https://doi.org/10.1021/ACSSUSCHEMENG.6B02542
- Naranov E.R., Sadovnikov A.A., Arapova O.V., Bugaev A.L., Usoltsev O.A., Gorbunov D.N., Russo V., Murzin D.Yu., Maximov A.L. Mechanistic insights on Ru nanoparticle in situ formation during hydrodeoxygenation of lignin-derived substances to hydrocarbons // Catal. Sci. Technol. 2023. V. 13. № 5. P. 1571–1583. https://doi.org/10.1039/D2CY01127A
- Naranov E., Sadovnikov A., Arapova O., Kuchinskaya T., Usoltsev O., Bugaev A., Janssens K., De Vos D., Maximov A. The in-situ formation of supported hydrous ruthenium oxide in aqueous phase during HDO of lignin-derived fractions // Appl. Catal. B. 2023. V. 334. ID 122861. https://doi.org/10.1016/J.APCATB.2023.122861
- Naranov E. Sustainable production of chemicals via hydrotreating of CO2 and biomass derived molecules using heterogeneous noble metal oxide catalysts // Chem. Cat. Chem. 2024. V. 2024. P. e202301268. https://doi.org/10.1002/CCTC.202301268
- Shadangi K.P., Mohanty K. Production and characterization of pyrolytic oil by catalytic pyrolysis of Niger seed // Fuel. 2014. V. 126. P. 109–115. https://doi.org/10.1016/J.FUEL.2014.02.035
- Wang J., Jiang J., Zhong Zh., Wang K., Wang X., Zhang B., Ruan R., Li M., Ragauskas A.J. Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5 // Energy Convers. Manag. 2019. V. 196. P. 759–767. https://doi.org/10.1016/J.ENCONMAN.2019.06.009
- Li X., Li J., Zhou G., Feng Y., Wang Y., Yu G., Deng Sh., Huang J., Wang B. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites // Appl. Catal. A Gen. 2014. V. 481. P. 173–182. https://doi.org/10.1016/J.APCATA.2014.05.015
- Zhao Y., Wang Y., Duan D., Ruan R., Fan L., Zhou Y., Dai L., Lv J., Liu Y. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production // Bioresour. Technol. 2018. V. 249. P. 69–75. https://doi.org/10.1016/J.BIORTECH.2017.09.184
- Chen X., Li Sh., Liu Z., Chen Y., Yang H., Wang X., Che Q., Chen W., Chen H. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO // Bioresour. Technol. 2019. V. 287. ID 121493. https://doi.org/10.1016/J.BIORTECH.2019.121493
- Yang H., Wang D., Li B., Zeng Zh., Qu L., Zhang W., Chen H. Effects of potassium salts loading on calcium oxide on the hydrogen production from pyrolysis-gasification of biomass // Bioresour. Technol. 2018. V. 249. P. 744–750. https://doi.org/10.1016/J.BIORTECH.2017.10.083
- Xu A., Zhou W., Zhang X., Zhao B., Chen L., Sun L., Ding W., Yang Sh., Guan H., Bai B. Gas production by catalytic pyrolysis of herb residues using Ni/CaO catalysts // J. Anal. Appl. Pyrolysis. 2018. V. 130. P. 216–223. https://doi.org/10.1016/J.JAAP.2018.01.006
- Zhang X., Sun L., Chen L., Xie X., Zhao B., Si H., Meng G. Comparison of catalytic upgrading of biomass fast pyrolysis vapors over CaO and Fe(III)/CaO catalysts // J. Anal. Appl. Pyrolysis. 2014. V. 108. P. 35–40. https://doi.org/10.1016/J.JAAP.2014.05.020
- Gupta J., Papadikis K., Konysheva E.Y., Lin Y., Kozhevnikov I.V., Li J. CaO catalyst for multi-route conversion of oakwood biomass to value-added chemicals and fuel precursors in fast pyrolysis // Appl. Catal. B. 2021. V. 285. ID 119858. https://doi.org/10.1016/J.APCATB.2020.119858
- Chen X., Li Sh., Liu Z., Cai N., Xia S., Chen W., Yang H., Chen Y., Wang X., Liu W., Chen H. Negative-carbon pyrolysis of biomass (NCPB) over CaO originated from carbide slag for on-line upgrading of pyrolysis gas and bio-oil // J. Anal. Appl. Pyrolysis. 2021. V. 156. ID 105063. https://doi.org/10.1016/J.JAAP.2021.105063
- Zheng Y., Tao L., Huang Y., Liu C., Wang Z., Zheng Z. Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 355–366. https://doi.org/10.1016/J.JAAP.2019.04.014
- Yang H., Coolman R., Karanjkar P., Wang H., Dornath P., Chen H., Fan W., Conner W.C., Mountziarisc T.J., Huber G. The effects of contact time and coking on the catalytic fast pyrolysis of cellulose // Green Chemistry. 2017. V. 19. № 1. P. 286–297. https://doi.org/10.1039/C6GC02239A
- Chen Y., Zhang X., Chen W., Yang H., Chen H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance // Bioresour. Technol. 2017. V. 246. P. 101–109. https://doi.org/10.1016/J.BIORTECH.2017.08.138
- Hu J., Si Y., Yang H., Shao J., Wang X., Lei T., Agblevor F.A., Chen H. Influence of volatiles-char interactions between coal and biomass on the volatiles released, resulting char structure and reactivity during co-pyrolysis // Energy Convers. Manag. 2017. V. 152. P. 229–238. https://doi.org/10.1016/J.ENCONMAN.2017.09.051
- Norouzi O., Jafarian S., Safari F., Tavasoli A., Nejati B. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char // Bioresour. Technol. 2016. V. 219. P. 643–651. https://doi.org/10.1016/J.BIORTECH.2016.08.017
- Yang H., Chen Z., Chen W., Chen Y., Wang X., Chen H. Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis // Energy. 2020. V. 210. ID 118646. https://doi.org/10.1016/J.ENERGY.2020.118646
- Sun K., Huang Q., Ali M., Chi Y., Yan J. Producing aromatic-enriched oil from mixed plastics using activated biochar as catalyst // Energy and Fuels. 2018. V. 32. № 4. P. 5471–5479. https://doi.org/10.1021/ACS.ENERGYFUELS.7B03710
- Zhang Y., Lei H., Yang Z., Qian K., Villota E. Renewable high-purity mono-phenol production from catalytic microwave-induced pyrolysis of cellulose over biomass-derived activated carbon catalyst // ACS Sustain. Chem. Eng. 2018. V. 6. № 4. P. 5349–5357. https://doi.org/10.1021/ACSSUSCHEMENG.8B00129
- Fan M., Li Ch., Shao Y., Sun K., Zhang L., Zhang Sh., Ding K., Gholizadeh M., Hu X. Impact of biochar catalyst on pyrolysis of biomass of the same origin // J. Environ. Chem. Eng. 2022. V. 10. № 5. ID108546. https://doi.org/10.1016/J.JECE.2022.108546
- Zhang L., Yao Z., Zhao L., Li Zh., Yi W., Kang K., Jia J. Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar // Energy. 2021. V. 232. P. 120927. https://doi.org/10.1016/J.ENERGY.2021.120927
- Liu Sh., Wu G., Gao Y., Li B., Feng Y., Zhou J., Hu X., Huang Y., Zhang Sh., Zhang H. Understanding the catalytic upgrading of bio-oil from pine pyrolysis over CO2-activated biochar // Renew Energy. 2021. V. 174. P. 538–546. https://doi.org/10.1016/J.RENENE.2021.04.085
- Wang Y., Huang L., Zhang T., Wang Q. Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts // Fuel. 2022. V. 313. ID 123006. https://doi.org/10.1016/J.FUEL.2021.123006
- Tian B., Du Sh., Guo F., Dong Y., Mao S., Qian L., Liu Q. Synthesis of biomimetic monolithic biochar-based catalysts for catalytic decomposition of biomass pyrolysis tar // Energy. 2021. V. 222. P. 120002. https://doi.org/10.1016/J.ENERGY.2021.120002
- Chen Y., Zhu Y., Wang Z., Li Y., Wang L., Ding L., Gao X., Ma Y., Guo Y. Application studies of activated carbon derived from rice husks produced by chemical-thermal process – a review // Adv. Colloid. Interface. Sci. 2011. V. 163. № 1. P. 39–52. https://doi.org/10.1016/J.CIS.2011.01.006
- Duan D., Lei H., Wang Y., Ruan R., Liu Y., Ding L., Zhang Y., Liu L. Renewable phenol production from lignin with acid pretreatment and ex situ catalytic pyrolysis // J. Clean. Prod. 2019. V. 231. P. 331–340. https://doi.org/10.1016/J.JCLEPRO.2019.05.206
- Bu Q., Lei H., Wang L., Wei Y., Zhu L., Zhang X., Liu Y., Yadavalli G., Tang J. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons // Bioresour. Technol. 2014. V. 162. P. 142–147. https://doi.org/10.1016/J.BIORTECH.2014.03.103
- Kumar R., Strezov V., Lovell E., Kan Y., Weldekidan H., He J., Dastjerdi B., Scott J. Bio-oil upgrading with catalytic pyrolysis of biomass using copper/zeolite-nickel/zeolite and copper-nickel/zeolite catalysts // Bioresour. Technol. 2019. V. 279. P. 404–409. https://doi.org/10.1016/J.BIORTECH.2019.01.067
- Sebestyén Z., Barta-Rajnai E., Bozi J., Blazsó M., Jakab E., Miskolczi N., Sója J., Czégény Zs. Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5 // Appl. Energy. 2017. V. 207. P. 114–122. https://doi.org/10.1016/J.APENERGY.2017.06.032
- Ansari K. B., Gaikar V.G. Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron // Renew. Energy. 2019. V. 130. P. 305–318. https://doi.org/10.1016/J.RENENE.2018.06.052
- Yang M., Shao J., Yang Z., Yang H., Wang X., Wu Zh., Chen H. Conversion of lignin into light olefins and aromatics over Fe/ZSM-5 catalytic fast pyrolysis: significance of Fe contents and temperature // J. Anal. Appl. Pyrolysis. 2019. V. 137. P. 259–265. https://doi.org/10.1016/J.JAAP.2018.12.003
- Che Q., Yang M., Wang X., Yang Q., Williams L.R., Yang H., Zou J., Zeng K., Zhu Y., Chen Y., Chen H. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis // Bioresour. Technol. 2019. V. 278. P. 248–254. https://doi.org/10.1016/J.BIORTECH.2019.01.081
- Venkatesan K., He S., Seshan K., Selvam P., Vinu R. Selective production of aromatic hydrocarbons from lignocellulosic biomass via catalytic fast-hydropyrolysis using W2C/γ-Al2O3 // Catal. Commun. 2018. V. 110. P. 68–73. https://doi.org/10.1016/J.CATCOM.2018.03.011
- Lu Q., Guo H.-q, Zhou M.-x., Cui M.-sh., Dong C.-q., Yang Y.-p. Selective preparation of monocyclic aromatic hydrocarbons from catalytic cracking of biomass fast pyrolysis vapors over Mo2N/HZSM-5 catalyst // Fuel Processing Technology. 2018. V. 173. P. 134–142. https://doi.org/10.1016/J.FUPROC.2018.01.017
- Maisano S., Urbani F., Mondello N., Chiodo V. Catalytic pyrolysis of Mediterranean sea plant for bio-oil production // Int. J. Hydrogen Energy. 2017. V. 42. № 46. P. 28082–28092. https://doi.org/10.1016/J.IJHYDENE.2017.07.124
- Wang Y.M., Wang J. Catalytic performances of HZSM-5, NaY and MCM-41 in two-stage catalytic pyrolysis of pinewood // IOP Conf. Ser. Earth Environ. Sci. 2016. V. 40. № 1. ID 012015. https://doi.org/10.1088/1755-1315/40/1/012015
- Stephanidis S., Nitsos C., Kalogiannis K., Iliopoulou E.F., Lappas A.A., Triantafyllidis K.S. Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: effect of hydrothermal pre-treatment of biomass // Catal. Today. 2011. V. 167. № 1. P. 37–45. https://doi.org/10.1016/J.CATTOD.2010.12.049
- Kelkar Sh., Saffron Ch.M., Andreassi K., Li Zh., Murkute A., Miller D.J., Pinnavaia Th.J., Kriegel R.M. A survey of catalysts for aromatics from fast pyrolysis of biomass // Appl. Catal. B. 2015. V. 174–175. P. 85–95. https://doi.org/10.1016/J.APCATB.2015.02.020
- Veses A., Puértolas B., Callén M.S., García T. Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: effect of different metal cations on the bio-oil final properties // Microporous and Mesoporous Materials. 2015. V. 209. P. 189–196. https://doi.org/10.1016/J.MICROMESO.2015.01.012
- Zheng Y., Wang F., Yang X., Huang Y., Liu C., Zheng Zh., Gu J. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5 // J. Anal. Appl. Pyrolysis. 2017. V. 126. P. 169–179. https://doi.org/10.1016/J.JAAP.2017.06.011
- Ghorbannezhad P., Firouzabadi M.D., Ghasemian A. Catalytic fast pyrolysis of sugarcane bagasse pith with HZSM-5 catalyst using tandem micro-reactor-GC-MS // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2018. V. 40. № 1. P. 15–21. https://doi.org/10.1080/15567036.2017.1381785
- Ding K., Zhong Z., Wang J., Zhang B., Addy M., Ruan R. Effects of alkali-treated hierarchical HZSM-5 zeolites on the production of aromatic hydrocarbons from catalytic fast pyrolysis of waste cardboard // J. Anal. Appl. Pyrolysis. 2017. V. 125. P. 153–161. https://doi.org/10.1016/J.JAAP.2017.04.006
- Duan D., Wang Y., Dai L., Ruan R., Zhao Y., Fan L., Tayier M., Liu Y. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating // Bioresour. Technol. 2017. V. 241. P. 207–213. https://doi.org/10.1016/J.BIORTECH.2017.04.104
- Dorado C., Mullen C.A., Boateng A.A. Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling // Appl. Catal. B. 2015. V. 162. P. 338–345. https://doi.org/10.1016/J.APCATB.2014.07.006
- Mullen C.A., Dorado C., Boateng A.A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: catalyst deactivation and coke formation // J. Anal. Appl. Pyrolysis. 2018. V. 129. P. 195–203. https://doi.org/10.1016/J.JAAP.2017.11.012
- Xue Y., Kelkar A., Bai X. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer // Fuel. 2016. V. 166. P. 227–236. https://doi.org/10.1016/J.FUEL.2015.10.125
- Yu D., Hui H., Li S. Two-step catalytic co-pyrolysis of walnut shell and LDPE for aromatic-rich oil // Energy Convers. Manag. 2019. V. 198. ID 111816. https://doi.org/10.1016/J.ENCONMAN.2019.111816
- Park Y.K., Siddiqui M.Z., Kang Y., Watanabe A., Lee H.W., Jeong S.J., Kim S., Kim Y.M. Increased aromatics formation by the use of high-density polyethylene on the catalytic pyrolysis of mandarin peel over HY and HZSM-5 // Catalysts. 2018. V. 8. № 12. P. 656. https://doi.org/10.3390/CATAL8120656
- Zhang H., Likun P.K.W., Xiao R. Improving the hydrocarbon production via co-pyrolysis of bagasse with bio-plastic and dual-catalysts layout // Science of the Total Environment. 2018. V. 618. P. 151–156. https://doi.org/10.1016/J.SCITOTENV.2017.11.045
- Morais E.K.L., Jiménez-Sánchez S., Hernando H., Ochoa-Hernández C., Pizarro P., Araujo A.S., Serrano D.P. Catalytic copyrolysis of lignocellulose and polyethylene blends over HBeta zeolite // Ind. Eng. Chem. Res. 2019. V. 58. № 16. P. 6243–6254. https://doi.org/10.1021/ACS.IECR.8B06158
- Chi Y., Xue J., Zhuo J., Zhang D., Liu M., Yao Q. Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41 // Sci. Total Environ. 2018. V. 633. P. 1105–1113. https://doi.org/10.1016/J.SCITOTENV.2018.03.239
- Dickerson T., Soria J. Catalytic fast pyrolysis: a review // Energies. 2013. V. 6. № 1. P. 514–538. https://doi.org/10.3390/EN6010514
- Ma Zh., Wei L., Zhou W., Jia L., Hou B., Li D., Zhao Y. Upgrading of fast pyrolysis bio-oil to drop-in fuel over Ru catalysts // J. Energy Institute. 2019. V. 92. № 4. P. 855–860. https://doi.org/10.1016/J.JOEI.2018.06.013
- Zhang W., Chen J., Liu R., Wang S., Chen L., Li K. Hydrodeoxygenation of lignin-derived phenolic monomers and dimers to alkane fuels over bifunctional zeolite-supported metal catalysts // ACS Sustain. Chem. Eng. 2014. V. 2. № 4. P. 683–691. https://doi.org/10.1021/SC400401N
- Hellinger M., Baier S., Mortensen P.M., Kleist W., Jensen A.D., Grunwaldt J.D. Continuous Catalytic Hydrodeoxygenation of Guaiacol over Pt/SiO2 and Pt/H-MFI-90 // Catalysts. 2015. V. 5. № 3. P. 1152–1166. https://doi.org/10.3390/CATAL5031152
- Ohta H., Yamamoto K., Hayashi M., Hamasaka G., Uozumi Y., Watanabe Y. Low temperature hydrodeoxygenation of phenols under ambient hydrogen pressure to form cyclohexanes catalysed by Pt nanoparticles supported on H-ZSM-5 // Chem. Communications. 2015. V. 51. № 95. P. 17000–17003. https://doi.org/10.1039/C5CC05607A
- Eschenbacher A., Saraeian A., Shanks B.H., Mentzel U.V., Jensen P.A., Henriksen U.B., Ahrenfeldt J., Jensen A.D. Performance-screening of metal-impregnated industrial HZSM-5/γ-Al2O3 extrudates for deoxygenation and hydrodeoxygenation of fast pyrolysis vapors // J. Anal. Appl. Pyrolysis. 2020. V. 150. ID 104892. https://doi.org/10.1016/J.JAAP.2020.104892
- Salakhum S., Saenluang K., Wattanakit C. Stability of monometallic Pt and Ru supported on hierarchical HZSM-5 nanosheets for hydrodeoxygenation of lignin-derived compounds in the aqueous phase // Sustain. Energy Fuels. 2020. V. 4. № 3. P. 1126–1134. https://doi.org/10.1039/C9SE00773C
- Salakhum S., Yutthalekha T., Shetsiri S., Witoon T., Wattanakit C. Bifunctional and bimetallic Pt-Ru/HZSM-5 nanoparticles for the mild hydrodeoxygenation of lignin-derived 4-propylphenol // ACS Appl. Nano Mater. 2019. V. 2. № 2. P. 1053–1062. https://doi.org/10.1021/ACSANM.8B02324
- Pawelec B., Loricera C.V., Geantet C., Mota N., Fierro J.L.G., Navarro R.M. Factors influencing selectivity in the liquid-phase phenol hydrodeoxygenation over ZSM-5 supported Pt/Ir and Pt+Ir catalysts // Molecular Catalysis. 2020. V. 482. ID 110669. https://doi.org/10.1016/J.MCAT.2019.110669
- Liu S., Tamura M., Nakagawa Y., Tomishige K. One-pot conversion of cellulose into n-hexane over the Ir-ReOx/SiO2 catalyst combined with HZSM-5 // ACS Sustain. Chem. Eng. 2014. V. 2. № 7. P. 1819–1827. https://doi.org/10.1021/SC5001463
- Wang P., Zheng Y., Liang X., Jia Zh., Wang X., Guo Y., Ren L. Pyrolysis of sugarcane bagasse for bio-chemicals production catalyzed by micro-mesoporous composite molecular sieves // Chemical Papers. 2021. V. 75. № 7. P. 3283–3293. https://doi.org/10.1007/s11696-020-01425-6
- Vichaphund S., Aht-Ong D., Sricharoenchaikul V., Atong D. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using me-tal/HZSM-5 prepared by ion-exchange and impregnation methods // Renew. Energy. 2015. V. 79. № 1. P. 28–37. https://doi.org/10.1016/J.RENENE.2014.10.013
- Jan O., Marchand R., Anjos L.C.A., Seufitelli G.V.S., Nikolla E., Resende F.L.P. Hydropyrolysis of lignin using Pd/HZSM-5 // Energy and Fuels. 2015. V. 29. № 3. P. 1793–1800. https://doi.org/10.1021/EF502779S
- Zeng Z., Xie J., Guo Y., Rao R., Chen B., Cheng L., Xie Y., Ouyang X. Hydrogenolysis of lignin to produce aromatic monomers over Fe–Pd bimetallic catalyst supported on HZSM-5 // Fuel Processing Technology. 2021. V. 213. ID 106713. https://doi.org/10.1016/J.FUPROC.2020.106713
- Zong R., Li H., Ding W.T., Huang H. Highly dispersed Pd on zeolite/carbon nanocomposites for selective hydrodeoxygenation of biomass-derived molecules under mild conditions // ACS Sustain. Chem. Eng. 2021. V. 9. № 29. P. 9891–9902. https://doi.org/10.1021/ACSSUSCHEMENG.1C02876
- Zhang C., Qi J., Xing J., Tang S.F., Song L., Sun Y., Zhang Ch., Xin H., Li X. An investigation on the aqueous-phase hydrodeoxygenation of various methoxy-substituted lignin monomers on Pd/C and HZSM-5 catalysts // RSC Adv. 2016. V. 6. № 106. P. 104398–104406. https://doi.org/10.1039/C6RA22492J
- Jiang J., Ding W., Li H. Promotional effect of F for Pd/HZSM-5 catalyst on selective HDO of biobased ketones // Renew. Energy. 2021. V. 179. P. 1262–1270. https://doi.org/10.1016/J.RENENE.2021.07.065
- Tang X., Ding W., Li H. Improved hydrodeoxygenation of bio-oil model compounds with polymethylhydrosiloxane by Brønsted acidic zeolites // Fuel. 2021. V. 290. ID 119883. https://doi.org/10.1016/J.FUEL.2020.119883
- Paone E., Espro C., Pietropaolo R., Mauriello F. Selective arene production from transfer hydrogenolysis of benzyl phenyl ether promoted by a co-precipitated Pd/Fe3O4 catalyst // Catal. Sci. Technol. 2016. V. 6. № 22. P. 7937–7941. https://doi.org/10.1039/C6CY01626J
Supplementary files
