Применение углеродного остатка переработки лигнина в качестве адсорбента для органических соединений
- Authors: Константинов Г.И.1, Манекина А.В.1, Чистяков А.В.1, Цодиков М.В.1
-
Affiliations:
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Issue: Vol 64, No 2 (2024)
- Pages: 126–137
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655558
- DOI: https://doi.org/10.31857/S0028242124020022
- EDN: https://elibrary.ru/NDKSGD
- ID: 655558
Cite item
Abstract
В работе представлены результаты по использованию углеродного остатка плазменно-каталитического пиролиза лигнина в качестве адсорбента для ряда модельных органических соединений и гудрона. Показана возможность пиролитической переработки адсорбированных соединений под действием микроволнового излучения (МВИ). Изучена зависимость нанесенного железа на скорость и глубину переработки адсорбированных органических соединений. Показано, что нанесение 5 мас. % Fe позволяет достигать 100%-ной конверсии адсорбата при температурах на 100–50°С ниже, чем при использовании немодифицированного углеродного адсорбента. Деструкция адсорбата в токе углекислого газа под действием МВИ позволяет получать синтез-газ состава 2Н2 : 1СО с выходом до 15–25%.
Keywords
Full Text

About the authors
Григорий Игоревич Константинов
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-2579-0083
к.х.н.
Russian Federation, 119991, МоскваАлина Владимировна Манекина
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: chistyakov@ips.ac.ru
ORCID iD: 0009-0005-7679-6871
инженер
Russian Federation, 119991, МоскваАндрей Валерьевич Чистяков
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Author for correspondence.
Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-4443-7998
к.х.н.
Russian Federation, 119991, МоскваМарк Вениаминович Цодиков
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: chistyakov@ips.ac.ru
ORCID iD: 0000-0002-8253-2945
д.х.н., проф.
Russian Federation, 119991, МоскваReferences
- Norgren M., Edlund H. Lignin: recent advances and emerging applications // Current Opinion in Colloid & Interface Science. 2014. V. 19. № 5. P. 409–416. https://doi.org/10.1016/j.cocis.2014.08.004
- Vanholme R., Demedts B., Morreel K., Ralph J., Boerjan W. Lignin biosynthesis and structure // Plant Physiology. 2010. V. 153. № 3. P. 895–905. https://doi.org/10.1104/pp.110.155119
- Constant S., Wienk H.L.J., Frissen A.E., de Peinder P., Boelens R., Van Es D.S. Grisel R.J.H., Weckhuysen B.M., Wouter J.J., Huijgen W.J.J., Gosselink R.J.A., Bruijnincx P.C.A. New insights into the structure and composition of technical lignins: a comparative characterisation study // Green Chemistry. 2016. V. 18. № 9. P. 2651–2665. https://doi.org/10.1039/C5GC03043A
- Liu C.J. Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly // Molecular Plant. 2012. V. 5. № 2. P. 304–317. https://doi.org/10.1093/mp/ssr121
- O’Brien J.A., Daudi A., Butt V.S., Bolwell G.P. Reactive oxygen species and their role in plant defence and cell wall metabolism // Planta. 2012. V. 236. № 3. P. 765–779. https://doi.org/10.1007/s00425-012-1696-9
- Upton B.M., Kasko A.M. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective // Chem. Rev. 2015. V. 116. № 4. P. 2275–2306. https://doi.org/10.1021/acs.chemrev.5b00345
- Zakzeski J., Bruijnincx P.C., Jongerius A.L., Weckhuysen B.M. The catalytic valorization of lignin for the production of renewable chemicals // Chem. Rev. 2010. V. 110. № 6. P. 3552–3599. https://doi.org/10.1021/cr900354u
- Xu C., Arancon R.A.D., Labidi J., Luque R. Lignin depolymerisation strategies: towards valuable chemicals and fuels // Chem. Society Rev. 2014. V. 43. № 22. P. 7485–7500. https://doi.org/10.1039/C4CS00235K
- Li C., Zhao X., Wang A., Huber G.W., Zhang T. Catalytic transformation of lignin for the production of chemicals and fuels // Chem. Rev. 2015. V. 115. P. 11559–11624. https://doi.org/10.1021/acs.chemrev.5b00155
- Azadi P., Inderwildi O.R., Farnood R., King D.A. Liquid fuels, hydrogen and chemicals from lignin: a critical review // Renewable and Sustainable Energy Reviews. 2013. V. 21. P. 506–523. https://doi.org/10.1016/j.rser.2012.12.022
- Joffres B., Laurenti D., Charon N., Daudin A., Quignard A., Geantet C. Thermochemical conversion of lignin for fuels and chemicals: a review // Oil & Gas Science and Technology–Revue d’IFP Energies Nouvelles. 2013. V. 68. № 4. P. 753–763. https://doi.org/10.2516/ogst/2013132
- Hu T.Q. Characterization of Lignocellulosic Materials. Oxford: Blackwell, 2008. P. 148–170. https://doi.org/10.1002/9781444305425
- Tsodikov M.V., Ellert O.G., Nikolaev S.A., Arapova O.V., Konstantinov G.I., Bukhtenko O.V., Vasil’kov A.Y. // Chem. Engineer. J. 2017. V. 309. P. 628–637. https://doi.org/10.1016/j.cej.2016.10.031
- Арапова О.В., Чистяков А.В., Цодиков М.В., Моисеев И.И. Лигнин-возобновляемый ресурс углеводородных продуктов и энергоносителей (обзор) // Нефтехимия. 2020. Т. 60. № 3. С. 251–269. https://doi.org/10.31857/S0028242120030041 [Arapova O.V., Chistyakov A.V., Tsodikov M.V., Moiseev I.I. Lignin as a renewable resource of hydrocarbon products and energy carriers (a review) // Petrol. Chemistry. 2020. V. 60. P. 227–243. https://doi.org/10.1134/S0965544120030044]
- Haber J. Surface area and porosity // Catalysis Today. 1994. V. 20. № 1. P. 11–16. https://doi.org/10.1016/0920-5861(94)85010-0
- Barrett E.P., Joyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms // J. Am. Chem. Soc. 1951. V. 73. № 1. P. 373–380. https://doi.org/10.1021/ja01145a126
- Dubinin M.M. Surface and porosity of adsorbents // Russ. Chem. Rev. 1982. V. 51. № 7. P. 605. https://doi.org/10.1070/RC1982v051n07ABEH002876
- Чистяков А.В., Константинов Г.И., Цодиков М.В., Максимов А.Л. Скоростное превращение метана в водород на поверхности углеродного адсорбента, стимулированное микроволновым излучением // Доклады РАН. Химия, науки о материалах. 2021. Т. 498. № 1. С. 64–68. https://doi.org/10.31857/S2686953521030031
- Kocheva L.S., Karmanov A.P., Kuz’min D.V., Dalimova G.N. Lignins from annual grassy plants // Chemistry of Natural Compounds. 2011. V. 47. № 5. P. 792–795. https://doi.org/10.1007/s10600-011-0061-8
- Wen J.L., Xue B.-L., Xu F., Sun R.-C., Pinkert A. Unmasking the structural features and property of lignin from bamboo // Industrial crops and products. 2013. V. 42. P. 332–343. https://doi.org/10.1016/j.indcrop.2012.05.041
- Thakur V.K., Thakur M.K. Recent advances in green hydrogels from lignin: a review // Intern. J. Biol. Macromol. 2015. V. 72. P. 834–847. https://doi.org/10.1016/j.ijbiomac.2014.09.044
- Laurichesse S., Avérous L. Chemical modification of lignins: towards biobased polymers // Progress in Polymer Science. 2014. V. 39. № 7. P. 1266–1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004
- Pan X., Kadla J.F., Ehara K., Gilkes N., Saddler J.N. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity // J. Agric Food Chem. 2006. V. 54. P. 5806–5813. https://doi.org/10.1021/jf0605392
- Cruz J.M., Domínguez J.M., Domínguez H., Parajó J.C. Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials // J. Agric. Food Chem. 2001. V. 49. P. 2459–2464. https://doi.org/10.1021/jf001237h
- Toh K., Nakano S., Yokoyama H., Ebe K., Gotoh K., Noda H. Anti-deterioration effect of lignin as an ultraviolet absorbent in polypropylene and polyethylene // Polym. J. 2005. V. 37. № 8. P. 633. https://doi.org/10.1295/polymj.37.633
Supplementary files
