Катализаторы на основе оксида вольфрама и Al–SBA-15 для окисления сернистых соединений нефтяного происхождения

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Синтезированные катализаторы на основе оксида вольфрама и содержащего алюминий мезопористого носителя Al–SBA-15 исследованы в окислении пероксидом водорода серосодержащих соединений нефтяного происхождения. Катализаторы исследованы методами низкотемпературной адсорбции–десорбции азота, рентгенофазового анализа (РФА), просвечивающей электронной микроскопии (ПЭМ) с элементным картированием, ядерного магнитного резонанса (ЯМР), термопрограммируемой десорбции аммиака, ИК-спектроскопии и спектроскопии комбинационного рассеяния света (КРС). Изучена зависимость конверсии дибензотиофена (ДБТ) от продолжительности реакции, температуры, состава, кислотности, количества катализатора и количества окислителя. Подобраны оптимальные условия окисления модельной смеси на основе ДБТ с содержанием серы 10000 ppm: 80°С, 3 мас. % катализатора, 3 мл ацетонитрила, 60 мин. После промывки катализаторов от продуктов окисления они могут быть повторно использованы не менее пяти циклов без значительной потери своей активности.

Full Text

Restricted Access

About the authors

Олеся Олеговна Гуль

Московский государственный университет имени М.В. Ломоносов

Author for correspondence.
Email: lesi00gul@gmail.com
ORCID iD: 0000-0001-6708-0058

химический факультет, аспирант

Russian Federation, 119991, Москва

Полина Димитровна Домашкина

Московский государственный университет имени М.В. Ломоносова

Email: lesi00gul@gmail.com
ORCID iD: 0000-0002-0456-8248

химический факультет, к.х.н.

Russian Federation, 119991, Москва

Аргам Виликович Акопян

Московский государственный университет имени М.В. Ломоносова

Email: lesi00gul@gmail.com
ORCID iD: 0000-0001-6386-0006

химический факультет, д.х.н.

Russian Federation, 119991, Москва

Александр Владимирович Анисимов

Московский государственный университет имени М.В. Ломоносова

Email: lesi00gul@gmail.com
ORCID iD: 0000-0001-9272-2913

химический факультет, д.х.н., проф.

Russian Federation, 119991, Москва

Владимир Маркович Сенявин

Московский государственный университет имени М.В. Ломоносова

Email: lesi00gul@gmail.com
ORCID iD: 0009-0001-4228-6903

химический факультет, к.х.н.

Russian Federation, 119991, Москва

References

  1. de Lima F. M., de Andrade B. T., Braga R. M., de Araújo Melo D. M., Martinelli A. E. Sulfur removal from model fuel by Zn impregnated retorted shale and with assistance of design of experiments // Environ. Sci. Pollut. Res. 2018. V. 25. P. 13760–13774. https://doi.org/10.1007/s11356-018-1504-6
  2. Shafiq I., Shafique S., Akhter P., Ishaq M., Yang W., Hussain M. Recent breakthroughs in deep aerobic oxidative desulfurization of petroleum refinery products // J. Clean. Prod. 2021. V. 294. ID 125731. https://doi.org/10.1016/j.jclepro.2020.125731
  3. Deng C., Li J., Kang L., Zhu M. Efficient Co/SBA-15 catalyst for aerobic oxidative desulfurization at mild reaction temperature // J. Mol.Catal. 2022. V. 530. ID 112567. https://doi.org/10.1016/j.mcat.2022.112567
  4. Liu F., Yu J., Qazi A.B., Zhang L., Liu X. Metal-based ionic liquids in oxidative desulfurization: a critical review // Environ. Sci. Technol. 2021. V. 55. № 3. P. 1419–1435. https://doi.org/10.1021/acs.est.0c05855
  5. Alibolandi M., Darian J.T., Ghaedian M., Royaee S.J., Shafeghat A. Non-catalytic oxidative desulfurization of gas condensate by ozone and process optimization using response surface methodology // Korean J. Chem. Eng. 2020. V. 37. P. 1867–1877. https://doi.org/10.1007/s11814-020-0595-1
  6. Есева Е.А., Акопян А.В., Синикова Н.А., Анисимов А.В. Генерируемые in situ органические пероксиды в окислительном обессеривании бензиновой фракции риформинга // Нефтехимия. 2021. Т. 61. № 4. P. 472–482 [Eseva E.A., Akopyan A.V., Sinikova N.A., Anisimov A.V. In situ generated organic peroxides in oxidative desulfurization of naphtha reformate // Petrol. Chemistry. 2021. V. 61. № 4. P. 472–482. https://doi.org/10.1134/S0965544121050133].
  7. Abdullah W.N.W., Ali R., Bakar W.A.W.A. In depth investigation of Fe/MoO3–PO4/Al2O3 catalyst in oxidative desulfurization of Malaysian diesel with TBHP–DMF system // J. Taiwan Inst. Chem. Eng. 2016. V. 58. P. 344–350. https://doi.org/10.1016/j.jtice.2015.06.001
  8. Wang B., Dai B., Kang L., Zhu M. Synthesis of three-dimensional ordered mesoporous W-doped KIT-6 for oxidative desulfurization catalyst of fuels // Fuel. 2020. V. 265. ID 117029. https://doi.org/10.1016/j.fuel.2020.117029
  9. Рахманов Э.В., Тараканова А.В., Валиева Т., Акопян А.В., Литвинова В.В., Максимов А.Л., Анисимов А.В., Вакарин С.В., Семерикова О.Л., Зайков Ю.П. Окислительное обессеривание дизельной фракции пероксидом водорода в присутствии катализаторов на основе переходных металлов // Нефтехимия. 2014. Т. 54. С. 48–50 [Rakhmanov E.V., Tarakanova A.V., Valieva T., Akopyan A.V., Litvinova V.V., Maksimov A.L., Anisimov A.V., Vakarin S.V., Semerikova O.L., Zaikov Y.P. Oxidative desulfurization of diesel fraction with hydrogen peroxide in the presence of catalysts based on transition metals // Petrol. Chemistry. 2014. V. 54. P. 48–50. https://doi.org/10.1134/S0965544114010101]
  10. Zhu H., Wu Z., Su D., Veith G. M., Lu H., Zhang P., Song-Hai Chai, Dai S. Constructing hierarchical interfaces: TiO2-supported PtFe–FeOx nanowires for room temperature CO oxidation // J. Am. Chem. Soc. 2015. V. 137. № 32. P. 10156–10159. https://doi.org/10.1021/jacs.5b07011
  11. Wang J., Wang Z., Huang B., Ma Y., Liu Y., Qin X., Zhang X., Dai Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO // ACS Appl. Mater. Interfaces. 2012. V. 4. № 8. P. 4024–4030. https://doi.org/10.1021/am300835p
  12. Epifani M., Comini E., Díaz R., Andreu T., Genc A., Arbiol J., P. Siciliano, Faglia G., Morante J.R. Solvothermal, chloroalkoxide-based synthesis of monoclinic WO3 quantum dots and gas-sensing enhancement by surface oxygen vacancies // ACS Appl. Mater. Interfaces. 2014. V. 6. № 19. P. 16808–16816. https://doi.org/10.1021/am504158r
  13. Wang B., Dai B., Kang L., Zhu M. Synthesis of three-dimensional ordered mesoporous W-doped KIT-6 for oxidative desulfurization catalyst of fuels // Fuel. 2020. V. 265. ID 117029. https://doi.org/10.1016/j.fuel.2020.117029
  14. Haghighi M., Gooneh-Farahani S. Insights to the oxidative desulfurization process of fossil fuels over organic and inorganic heterogeneous catalysts: advantages and issues // Environ. Sci. Pollut. Res. 2020. V. 27. P. 39923–39945. https://doi.org/10.1007/s11356-020-10310-4
  15. Pham X.N., Nguyen M.B., Ngo H.S., Doan H.V. Highly efficient photocatalytic oxidative desulfurization of dibenzothiophene with sunlight irradiation using green catalyst of Ag@AgBr/Al–SBA-15 derived from natural halloysite // J. Ind. Eng. Chem. 2020. V. 90. P. 358–370. https://doi.org/10.1016/j.jiec.2020.07.037
  16. Ponte M.V., Rivoira L.P., Cussa J., Martínez M.L., Beltramone A.R., Anunziata O.A. Optimization of the synthesis of SBA-3 mesoporous materials by experimental design // Microporous Mesoporous Mater. 2016. V. 227. P. 9–15. https://doi.org/10.1016/j.micromeso.2016.02.030
  17. Costa J.A.S., de Jesus R.A., Santos D.O., Mano J.F., Romao L.P., Paranhos C.M. Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials // Microporous Mesoporous Mater. 2020. V. 291. ID 109698. https://doi.org/10.1016/j.micromeso.2019.109698
  18. Jiang Y., Abukhadra M.R., Refay N.M., Sharaf M.F., El-Meligy M.A., Awwad E.M. Synthesis of chitosan/MCM-48 and β-cyclodextrin/MCM-48 composites as bio-adsorbents for environmental removal of Cd2+ ions; kinetic and equilibrium studies // React. Funct. Polym. 2020. V. 154. ID 104675. https://doi.org/10.1016/j.reactfunctpolym.2020.104675
  19. Jamali N., Ramezani N., Mousazadeh M.H. Modified mesoporous HMS supported V/W for oxidative desulfurization of dibenzothiophene // Phys. Chem. Res. 2021. V. 9. № 4. P. 637–649. https://doi.org/10.22036/PCR.2021.276639.1898
  20. Ding Y., Wang J., Liao M., Li J., Zhang L., Guo J., Wu H. Deep oxidative desulfurization of dibenzothiophene by novel POM-based IL immobilized on well-ordered KIT-6 // Chem. Eng. J. 2021. V. 418. ID 129470. https://doi.org/10.1016/j.cej.2021.129470
  21. Juliao D., Mirante F., Ribeiro S.O., Gomes A.C., Valenca R., Ribeiro J.C., Martyn P., Baltazar de Castroa, GonçalvesbI.S., Balula S.S. Deep oxidative desulfurization of diesel fuels using homogeneous and SBA-15-supported peroxophosphotungstate catalysts // Fuel. 2019. V. 241. P. 616–624. https://doi.org/10.1016/j.fuel.2018.11.095
  22. Mitran R.A., Culita D.C., Atkinson I. Thermal stability enhancement of mesoporous SBA-15 silica through nanoconfinement of ceria nanoparticles // Microporous Mesoporous Mater. 2020. V. 306. ID 110484. https://doi.org/10.1016/j.micromeso.2020.110484
  23. Verma P., Kuwahara Y., Mori K., Raja R., Yamashita H. Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications // Nanoscale. 2020. V. 12. № 21. P. 11333–11363. https://doi.org/10.1039/D0NR00732C
  24. Houda S., Lancelot C., Blanchard P., Poinel L., Lamonier C. Oxidative desulfurization of heavy oils with high sulfur content: a review // Catalyst. 2018. V. 8. № 9. P. 344–359. https://doi.org/10.3390/catal8090344
  25. Li Y., Zhang W., Zhang L., Yang Q., Wei Z., Feng Z., Li C. Direct synthesis of Al−SBA-15 mesoporous materials via hydrolysis-controlled approach // J. Phys. Chem. B. 2004. V. 108. № 28. P. 9739–9744. https://doi.org/10.1021/jp049824j
  26. Mouli K.C., Soni K., Dalai A., Adjaye J. Effect of pore diameter of Ni–Mo/Al–SBA-15 catalysts on the hydrotreating of heavy gas oil // Appl. Catal. A General. 2011. V. 404. P. 21–29. https://doi.org/10.1016/j.apcata.2011.07.001
  27. Akopyan A., Polikarpova P., Gul O., Anisimov A., Karakhanov E. Catalysts based on acidic SBA-15 for deep oxidative desulfurization of model fuels // Energy Fuels. 2020. V. 34. № 11. P. 14611–14619. https://doi.org/10.1021/acs.energyfuels.0c02008
  28. Sun H., Tang Q.H., Du Y., Liu X.B., Chen Y., Yang Y.H. Mesostructured SBA-16 with excellent hydrothermal, thermal and mechanical stabilities: modified synthesis and its catalytic application // J. Colloid Interface Sci. 2009. V. 333. № 1. P. 317–323. https://doi.org/10.1016/j.jcis.2009.01.071
  29. Li X., Huang S., Xu Q., Yang Y. Preparation of WO3–SBA-15 mesoporous molecular sieve and its performance as an oxidative desulfurization catalyst // Transition Met. Chem. 2009. V. 34. P. 943–947. https://doi.org/10.1007/s11243-009-9285-x
  30. Rakngam I., Osakoo N., Wittayakun J., Chanlek N., Pengsawang A., Sosa N., Butburee T., Faungnawakij K., Khemthong P. Properties of mesoporous Al–SBA-15 from one-pot hydrothermal synthesis with different aluminium precursors and catalytic performances in xylose conversion to furfural // Microporous Mesoporous Mater. 2021. V. 317. ID 110999. https://doi.org/10.1016/j.micromeso.2021.110999
  31. Eseva E.A., Lukashov M.O., Cherednichenko K.A., Levin I.S., Akopyan A.V. Heterogeneous catalysts containing an Anderson-type polyoxometalate for the aerobic oxidation of sulfur-containing compounds // Ind. Eng. Chem. Res. 2021. V. 60. № 39. ID 14154. https://doi.org/10.1021/acs.iecr.1c03201
  32. Ma J., Qiang L.S., Wang J.F., Tang X.B., Tang D.Y. Effect of different synthesis methods on the structural and catalytic performance of SBA-15 modified by aluminum // J. Porous Mater. 2011. V. 18. P. 607–614.https://doi.org/10.1007/s10934-010-9416-y
  33. Tan G.L., Tang D., Dastan D., Jafari A., Shi Z., Chu Q.Q., Silva J.P.B., Yin X.T. Structures, morphological control, and antibacterial performance of tungsten oxide thin films // Ceram. Int. 2021. V. 47. № 12. P. 17153–17160. https://doi.org/10.1016/j.ceramint.2021.03.025
  34. Zhang M., Zhu W., Li H., Li M., Yin S., Li Y., Wei Y., Li H. Facile fabrication of molybdenum-containing ordered mesoporous silica induced deep desulfurization in fuel // Colloids Surf. A. 2016. V. 504. P. 174–181. 10.1016/j.colsurfa.2016.05.077' target='_blank'>http://dx.doi.org/doi: 10.1016/j.colsurfa.2016.05.077
  35. Kumaravel S., Thiripuranthagan S., Durai M., Erusappan E., Vembuli T. Catalytic transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over Sn/Al–SBA-15 catalysts // New J. Chemistry. 2020. V. 44. № 20. P. 8209–8222. https://doi.org/10.1039/D0NJ01288B
  36. Li Z., Li C., Park S.B., Hong G.H., Park J.S., Song B.J., Lee C.W., Kim J.M. Highly efficient mesoporous WOx/KIT-6 catalysts for oxidative desulfurization of dibenzothiophene with hydrogen peroxide // Research on Chemical Intermediates. 2018. V. 44. P. 3687–3695. https://doi.org/10.1007/s11164-018-3386-0
  37. Scheithauer M., Grasselli R.K., Knözinger H. Genesis and structure of WOx/ZrO2 solid acid catalysts // Langmuir. 1998. V. 14. № 11. P. 3019–3029. https://doi.org/10.1021/la971399g
  38. Tian Y., Yao Y., Zhi Y., Yan L., Lu S. Combined extraction–oxidation system for oxidative desulfurization (ODS) of a model fuel // Energy Fuels. 2015. V. 29. № 2. P. 618–625. https://doi.org/10.1021/ef502396b
  39. Julião D., Gomes A.C., Cunha-Silva L., Valença R., Ribeiro J.C., Pillinger M., de Castro B., Gonçalves I.S., Balula S.S. A sustainable peroxophosphomolybdate/H2O2 system for the oxidative removal of organosulfur compounds from simulated // Appl. Catal. A: Gen. 2020. V. 589. ID 117154. https://doi.org/10.1016/j.apcata.2019.117154

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Low-temperature nitrogen adsorption–desorption isotherms. Catalysts: curve 1 — SBA-15; curve 2 — 1% Al–SBA-15; curve 3 — 5% Al–SBA-15; curve 4 — 5% W/Al–SBA-15.

Download (137KB)
3. Fig. 2. NMR Al27 spectrum of the 5% Al–SBA-15 catalyst.

Download (55KB)
4. Fig. 3. X-ray diffraction patterns of SBA-15 catalysts and support.

Download (115KB)
5. Fig. 4. TEM images: (a) – SBA-15, (b) – 5% W/1% Al–SBA-15 and (c) – 5% W/5% Al–SBA-15.

Download (324KB)
6. Fig. 5. TEM images with mapping of the 5% W/5% Al–SBA-15 catalyst with the distribution of elements: (a) – silicon; (b) – tungsten; (c) – aluminum; (d) – oxygen.

Download (281KB)
7. Fig. 6. FT-IR (a) and Raman spectra (b) of W/Al–SBA-15 catalysts and SBA-15 support: 1 – SBA-15; 2 – 5% W/5% Al–SBA-15; 3 – 10% W/5% Al–SBA-15.

Download (235KB)
8. Fig. 7. Comparison of the activity of 2.5% W/1% Al–SBA-15 catalysts; 5% W/1% Al–SBA-15; 10% W/1% Al–SBA-15; 2.5% W/5% Al–SBA-15; 5% W/5% Al–SBA-15; 10% W/5% Al–SBA-15. Oxidation conditions: H2O2 : S = 6 : 1 (mol), 0.5 wt. %, 60°C, S = 500 ppm.

Download (179KB)
9. Fig. 8. Dependence of DBT conversion on the aluminum content and the amount of oxidizer. Oxidation conditions: 0.5 wt. % catalyst, 60°C, H2O2 : S (mol) – 2 : 1 (■); 4 : 1 (●); 6 : 1 (▲).

Download (108KB)
10. Fig. 9. Dependence of DBT conversion on the amount of catalyst. Oxidation conditions: H2O2 : S = 4 : 1 (mol), 60°C, 20 min, S = 500 ppm.

Download (78KB)
11. Fig. 10. Dependence of DBT conversion on temperature and time. Oxidation conditions: cat. 5% W/5% Al–SBA-15, H2O2 : S = 4 : 1 (mol), 0.5 wt. % catalyst, S = 500 ppm.

Download (79KB)
12. Fig. 11. Oxidation of different classes of sulfur compounds with hydrogen peroxide. Oxidation conditions: H2O2 : S = 4 : 1 (mol), 0.5 wt. % catalyst, 60°C, 30 min, S = 500 ppm.

Download (57KB)
13. Fig. 12. Dependence of oxidation of model mixtures on the addition of acetonitrile: (a) oxidation of model mixtures with different sulfur content of 500–5000 ppm (H2O2 : S = 4 : 1 (mol), 0.5 wt. % catalyst, 60°C); (b) oxidation of a model mixture based on DBT in n-dodecane with a content of 10000 ppm total sulfur (H2O2 : S = 4 : 1 (mol), cat. 0.5 wt. %, 80°C).

Download (177KB)

Copyright (c) 2024 Russian Academy of Sciences