Добавки к катализатору крекинга для снижения содержания токсичных компонентов в дымовых газах (обзор)
- Authors: Потапенко О.В.1, Бобкова Т.В.1, Дмитриев К.И.1, Кобзарь Е.О.1, Доронин В.П.1, Сорокина Т.П.1, Юртаева А.С.1, Ковеза В.А.1
-
Affiliations:
- Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН
- Issue: Vol 64, No 1 (2024)
- Pages: 5-18
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655564
- DOI: https://doi.org/10.31857/S0028242124010011
- EDN: https://elibrary.ru/OJKXDA
- ID: 655564
Cite item
Abstract
В статье представлен обзор данных о применяемых подходах для снижения выбросов CO, SOx и NOx в газах регенерации катализатора крекинга, таких как некаталитические и каталитические методы, в том числе и результаты разработок добавок, выполняемых в ЦНХТ ИК СО РАН. Проведен сравнительный анализ различных каталитических систем в данной области. Определены перспективные направления для разработки эффективных добавок к катализатору крекинга для снижения содержания токсичных компонентов в дымовых газах.
Full Text

About the authors
Олег Валерьевич Потапенко
Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН
Author for correspondence.
Email: potap@ihcp.ru
ORCID iD: 0000-0002-2755-7998
к.х.н.
Russian Federation, Омск, 644040Татьяна Викторовна Бобкова
Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН
Email: potap@ihcp.ru
ORCID iD: 0000-0002-6542-2082
к.х.н.
Russian Federation, Омск, 644040Константин Игоревич Дмитриев
Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН
Email: potap@ihcp.ru
ORCID iD: 0000-0003-0704-2468
к.т.н.
Russian Federation, Омск, 644040Елена Олеговна Кобзарь
Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН
Email: potap@ihcp.ru
ORCID iD: 0000-0002-3387-2855
Russian Federation, Омск, 644040
Владимир Павлович Доронин
Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН
Email: potap@ihcp.ru
ORCID iD: 0000-0003-2565-8223
к.т.н.
Russian Federation, Омск, 644040Татьяна Павловна Сорокина
Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН
Email: potap@ihcp.ru
ORCID iD: 0000-0002-1709-423X
Russian Federation, Омск, 644040
Арина Сергеевна Юртаева
Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН
Email: potap@ihcp.ru
ORCID iD: 0000-0002-8851-2013
Russian Federation, Омск, 644040
Владислав Анатольевич Ковеза
Центр новых химических технологий ИК СО РАН, Институт катализа СО РАН
Email: potap@ihcp.ru
ORCID iD: 0000-0003-3103-7925
Russian Federation, Омск, 644040
References
- Letzsch W. Fluid Catalytic cracking (FCC) in petroleum refining // Handbook of Petroleum Processing. 2015. V. 1. P. 261–316. https://doi.org/10.1007/978-3-319-14529-7_2
- Капустин В.М., Гуреев А.А. Технология переработки нефти. Часть 2. Деструктивные процессы. М.: КолосС, 2007. 334 с.
- Cerqueira H.S., Caeiro G., Costa L., Ribeiro F.R. Deactivation of FCC catalysts // J. Mol. Catal. A: Chem. 2008. V. 292. № 1. P. 1–13. https://doi.org/10.1016/j.molcata.2008.06.014
- Oloruntoba A., Zhang Y., Hsu C.S. State-of-the-art review of fluid catalytic cracking (FCC) catalyst regeneration intensification technologies // Energies. 2022. V. 15. № 6. P. 2061. https://doi.org/10.3390/en15062061
- Zhang T., Lin Q., Xue Z., Munson R., Magneschi G. Sinopec Zhongyuan oil field company refinery CCS-EOR project // Energy Procedia. 2017. V. 114. P. 5869–5873. https://doi.org/10.1016/j.egypro.2017.03.1724
- Ткачев С.М. Технология переработки нефти и газа. Процессы глубокой переработки нефти и нефтяных фракций: в 2-х ч. Ч. 1. Курс лекций. М.: УО «ПГУ», 2006. 345 с.
- Clough M., Pope J.C., Lin L.T.X., Komvokis V., Pan S.S., Yilmaz B. Nanoporous materials forge a path forward to enable sustainable growth: technology advancements in fluid catalytic cracking // Microporous Mesoporous Mater. 2017. V. 254. P. 45–58. https://doi.org/10.1016/j.micromeso.2017.03.063
- Chester A.W. Chapter 6. CO combustion promoters: past and present // Studies in Surface Science and Catalysis. 2007. V. 166. P. 67–77. https://doi.org/10.1016/s0167-2991(07)80189-3
- Luo L., Rainer D., Gonzalez J.A. Laboratory deactivation testing for the stability of FCC CO combustion promoters // Appl. Catal. B. 2007. V. 72. № 3. P. 212–217. https://doi.org/10.1016/j.apcatb.2006.10.010
- Рекламный проспект Albemarle KOC-15™. The flexible and effective way to lower afterburn in your FCC unit. 2011. Cat-221332–0111.
- Efthimiadis E.A., Iliopoulou E.F., Lappas A.A., Iatridis D.K., Vasalos I.A. NO reduction studies in the FCC process. Evaluation of NO reduction additives for FCCU in bench-and pilot plant-scale reactors // Ind. Eng. Chem. Res. 2002. V. 41. № 22. P. 5401–5409. https://doi.org/10.1021/ie020265h
- Zhao X., Peters A.W., Weatherbee G.W. Nitrogen chemistry and NOx control in a fluid catalytic cracking regenerator // Ind. Eng. Chem. Res. 1997. V. 36. № 11. P. 4535–4542. https://doi.org/10.1021/ie970130p
- Bahrami B., Komvokis V.G., Ziebarth M.S., Alexeev O.S., Amiridis M.D. NH3 decomposition and oxidation over noble metal-based FCC CO combustion promoters // Appl. Catal. B. 2013. V. 130–131. P. 25–35. https://doi.org/10.1016/j.apcatb.2012.09.057
- Alexeev O.S., Krishnamoorthy S., Jensen С., Ziebarth M.S., Yaluris G., Roberie T.G., Amiridis M.D. In situ FTIR characterization of the adsorption of CO and its reaction with NO on Pd-based FCC low NOx combustion promoters // Catal. Today. 2007. V. 127. № 1–4. P. 189–198. https://doi.org/10.1016/j.cattod.2007.05.003
- Parmar S., Sankaranarayanan T.M., Ravichandran G. Short review on CO combustion promoters for FCC regenerator // Catal. Surv. from Asia. 2022. V. 26. P. 281–293. https://doi.org/10.1007/s10563-022-09368-6
- Turner K., Hunt D., Griesinger E. Low NOx Promoter optimization at CITGO petroleum corporation’s Lake Charles Refinery // Catalagram. 2010. № 108. P. 33–36.
- Рекламный проспект INTERCATJM. FCC additives and catalyst handling technologies. 2016.
- Рекламный проспект Albemarle ELIMINOx™. Flexible combustion promotion with lower NOx emissions. 2011. Cat-221332–0111.
- Bahrami S., Niaei1 A., Illán-Gómez M.-J., Tarjomannejad A., Mousavi S., Albaladejo-Fuentes V. Catalytic reduction of NO by CO over CeO2–MOx (0.25) (M = Mn, Fe and Cu) mixed oxides–modeling and optimization of catalyst preparation by hybrid ANN-GA // J. Environ. Chem. Eng. 2017. V. 5. № 5. P. 4937–4947. http://dx.doi.org/10.1016/j.jece.2017.09.023
- Cai L., Hu Z., Branton P., Li W. The effect of doping transition metal oxides on copper manganese oxides for the catalytic oxidation of CO // Chinese J. Catal. 2014. V. 35. P. 159–167. http://dx.doi.org/10.1016/S1872–2067(12)60699–8
- Zhang X., Deng Y-Q., Tian P., Shang H., Xu J., Han Y.-F. Dynamic active sites over binary oxide catalysts: in situ/operandospectroscopic study of low-temperature CO oxidation over MnOx–CeO2 catalysts // Appl. Catal. B. 2016. V. 191. P. 179–191. http://dx.doi.org/10.1016/j.apcatb.2016.03.030
- Iliopoulou E.F., Efthimiadis E.A., Nalbandian L., Vasalos I.A., Barth J.-O., Lercher J.A. Ir-Based additives for NO reduction and CO oxidation in the FCC regenerator: evaluation, characterization and mechanistic studies // Appl. Catal. B. 2005. V. 60. P. 277–288. http://dx.doi.org/10.1016/j.apcatb.2005.03.011
- Yang B., Mu W., Tsz Woon Lo B., Liu S., Chen Z., France L.J., Li X. Efficient TiO2-nanobelt-supported Ir catalysts for FCC-generated NOx and CO remediation // Ind. Eng. Chem. Res. 2020. V. 59. № 20. P. 9655–9665. https://doi.org/10.1021/acs.iecr.9b06656
- Barth J.-O., Lercher J.A. Development of novel catalytic additives for the in situ reduction of NOx from fluid catalytic cracking units // Stud. Surf. Sci. Catal. 2004. V. 154. P. 2441–2448. https://doi.org/10.1016/S0167-2991(04)80509-3
- Iliopoulou E.F., Efthimiadis E.A., Vasalos I.A. Ag-Based catalytic additives for the simultaneous reduction of NO and CO emissions from the regenerator of a FCC unit // Ind. Eng. Chem. Res. 2004. V. 43. P. 1388–1394. http://dx.doi.org/10.1021/ie0305519
- Vjunov A., Kharas K.C., Komvokis V., Dundee A., Zhang C.C., Yilmaz B. Pragmatic approach toward catalytic CO emission mitigation in fluid catalytic cracking (FCC) units // Catalysts. 2021. V. 11. № 6. P. 707–712. https://doi.org/10.3390/catal11060707
- Vjunov A., Kharas K.C., Komvokis V., Dundee A., Yilmaz B. Practical approaches towards NOx emission mitigation from fluid catalytic cracking (FCC) units // Catalysts. 2021. V. 11. № 10. P. 1146–1154. https://doi.org/10.3390/catal11101146
- Доронин В.П., Цырульников П.Г., Белая Л.А., Сорокина Т.П., Слептерев А.А. Катализатор для окисления CO в процессе регенерации катализаторов крекинга и способ его приготовления // Патент РФ № 2365408. 2009.
- Доронин В.П., Липин П.В., Потапенко О.В., Сорокина Т.П., Короткова Н.В., Горденко В.И. Перспективные разработки: катализаторы крекинга и добавки к ним // Катализ в промышленности. 2014. № 5. С. 82–87 [Doronin V.P., Lipin P.V., Potapenko O.V., Sorokina T.P., Korotkova N.V., Gordenko V.I. Advanced developments: cracking catalysts and additives to them // Catal. Ind. 2014. № 6. P. 307–311. https://doi.org/10.1134/S2070050414040072]
- Дмитриев К.И., Потапенко О.В., Бобкова Т.В., Леонтьева Н.Н., Сорокина Т.П., Доронин В.П. Добавки для дожига монооксида углерода в газах регенерации катализатора крекинга без использования благородных металлов // Журн. прикл. химии. 2019. Т. 92. № 3. С. 378–385. https://doi.org/10.1134/S0044461819030137 [Dmitriev K.I., Potapenko O.V., Bobkova T.V., Leont’eva N.N., Sorokina T.P., Doronin V.P. Additives for carbon monoxide afterburning in gases from regeneration of a cracking catalyst without Noble metals // Russ. J. Appl. Chem. 2019. V. 92. P. 423–429]. https://doi.org/10.1134/S1070427219030133
- Цырульников П.Г. Эффект термоактивации в каталитических системах MnOx /Al2O3 для процессов глубокого окисления углеводородов // Российский химический журнал. 2007. T. 51. № 4. C. 133–139 [Tsyrul’nikov P.G. Thermal activation effect on catalytic systems MnOx /Al2O3 for deep oxidation of hydrocarbons // Russ. J. Gen. Chem. 2007. V. 77. № 12. P. 2328–2336. https://doi.org/10.1134/S1070363207120389].
- Цырульников П.Г., Стукен С.А., Кудря Е.Н., Балашов В.А., Качкина О.А., Любушкин В.А., Атаманчук О.В. Катализатор глубокого окисления органических соединений и оксида углерода // Патент РФ № 2063803. 1994.
- САНПИН 1.2.3685–21 № 2 Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания. Дата введения 28.01.2021. М.: Изд-во стандартов, 2021.
- Каминский Э.Ф., Хавкин В.А. Глубокая переработка нефти: технологический и экологический аспекты. М.: Техника, 2001. 384 с.
- Bhattacharyya A., Yoo J.S. Additives for the catalytic removal of fluid catalytic cracking unit flue gas pollutants // Stud. Surf. Sci. Catal. 1993. V. 76. P. 531–562. https://doi.org/10.1016/S0167-2991(08)63837-9
- Hirschberg E.H., Bertolacini R.J. Catalytic control of SOx emissions from fluid catalytic cracking units // Fluid Catalytic Cracking. 1988. P. 114–145. https://doi.org/10.1021/bk-1988-0375.ch008
- Scherzer J. Designing FCC catalysts with high-silica Y zeolites // Appl. Catal. 1991. V. 75. № 1. P. 1–32. https://doi.org/10.1016/S0166-9834(00)83119-X
- Baillie C., Cooper C. Deliver high levels of SOx reduction with SOx-reduction additive // Hydrocarb. Process. 2021.
- Рекламный проспект BASF. EnviroSOx enables full FCC operation through turnaround. 2019. https://www.rezel.com.cn/product_detail.asp (дата обращения – 25.10.2023)
- Рекламный проспект Albemarle. FCC additives. DuraSOx™. Highly attrition-resistant SOx reduction additive without performance compromise. 2011.
- De Graaf E.A., Gonzalez J.A., Francis J.A., Ludvig M.M. Additive-containing anionic clays for reducing SOx emissions from an FCC regenerator and process for making them // Patent EP 2134651. 2018.
- Jones W., O’Connor P., Stamires D. Composition comprising a metal hydroxy salt, its preparation and use as catalyst or sorbent // Patent EP № 1601457. 2020.
- Рекламный проспект Johnson Matthey. Sulphur oxide reduction FCC additives. 2016.
- Рекламный проспект Grace Davison № 109. A New Generation of Super DESOX Additive 2011.
- Fletcher R. High rare Earths Prices! Options for reducing FCC catalyst costs // Intercat-Rare Earth Options. Dusseldorf, 2011.
- Jiang R., Yu S., Zhou Y., Zhu T. Study on the relation between the Mn/Al mixed oxides composition and performance of FCC sulfur transfer agent // Catalysts. 2016. V. 6. № 2. P. 1–20. https://doi.org/10.3390/catal6020020
- Corma A., Palomares A.E., Rey F., Márquez F. Simultaneous catalytic removal of SOx and NOx with hydrotalcite-derived mixed oxides containing copper, and their possibilities to be used in FCC units // J. Catal. 1997. V. 170. № 1. P. 140–149. https://doi.org/10.1006/jcat.1997.1750
- Pi Z., Shen B., Zhao J., Liu J. CuO, CeO2 Modified Mg–Al spinel for removal of SO2 from fluid catalytic cracking flue gas // Ind. Eng. Chem. Res. 2015. V. 54. № 43. P. 10622–10628. https://doi.org/10.1021/acs.iecr.5b02329
- Jae L.S., Jun H.K., Jung S.Y., Lee T.J., Ryu C.K., Kim J.C. Regenerable MgO-based SOx removal sorbents promoted with cerium and iron oxide in RFCC // Ind. Eng. Chem. Res. 2005. V. 44. № 26. P. 9973–9978. https://doi.org/10.1021/ie050607u
- Jiang L., Wei M., Xu X., Lin Y., Lü Z., Song J., Duan X. SOx oxidation and adsorption by CeO2/MgO: synergistic effect between CeO2 and MgO in the fluid catalytic cracking process // Ind. Eng. Chem. Res. 2011. V. 50. № 8. P. 4398–4404. https://doi.org/10.1021/ie102243y
- Pereira H.B., Polato C.M., Monteiro J.L.F., Henriques C.A. Mn/Mg/Al-spinels as catalysts for SOx abatement: Influence of CeO2 incorporation and catalytic stability // Catal. Today. 2010. V. 149. № 3. P. 309–315. https://doi.org/10.1016/j.cattod.2009.06.006
- Li B., Yuan S. Synthesis, characterization, and evaluation of TiMgAlCu mixed oxides as novel SOx removal catalysts // Ceram. Int. 2014. V. 40. № 8. P. 11559–11566. https://doi.org/10.1016/j.ceramint.2014.03.112
- Li S., Wang X., Chen L. Additives for the catalytic removal of FCC flue gas SO2 and SO3 // Pet. Sci. Technol. 2003. V. 21. № 5. P. 805–824. https://doi.org/10.1081/LFT-120017451
- Kang H.T., Lv K., Yuan S.L. Synthesis, characterization, and SO2 removal capacity of MnMgAlFe mixed oxides derived from hydrotalcite-like compounds // Appl. Clay Sci. 2013. V. 72. P. 184–190. https://doi.org/10.1016/j.clay.2013.01.015
- Cantú M., López-Salinas E., Valente J.S., Montiel R. SOx removal by calcined MgAlFe hydrotalcite-like materials: effect of the chemical composition and the cerium incorporation method // Environ. Sci. Technol. 2005. V. 39. № 24. P. 9715–9720. https://doi.org/10.1021/es051305m
- Cheng W.P., Yu X.Y., Wang W.J., Liu L., Yang J.G., He M.Y. Synthesis, characterization and evaluation of Cu/MgAlFe as novel transfer catalyst for SOx removal // Catal. Commun. 2008. V. 9. № 6. P. 1505–1509. https://doi.org/10.1016/j.catcom.2007.12.020
- Kong J., Jiang L., Huo Z., Xu X., Evans D.G., Song J., He M., Li Z., Wang Q., Yan L. Influence of the preparation process on the performance of three hydrotalcite-based De-SOx catalysts // Catal. Commun. 2013. V. 40. P. 59–62. https://doi.org/10.1016/j.catcom.2013.05.026
- Polato C.M.S., Henriques C.A., Neto A.A., Monteiro J.L.F. Synthesis, characterization and evaluation of CeO2/Mg, Al-mixed oxides as catalysts for SOx removal // J. Mol. Catal. A: Chem. 2005. V. 241. № 1. P. 184–193. https://doi.org/10.1016/j.molcata.2005.07.006
- Sanchez-Cantu M., Perez-Diaz L.M., Maubert A.M., Valente J.S. Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction // Catal. Today. 2010. V. 150. № 3. P. 332–339. https://doi.org/10.1016/j.cattod.2009.09.010
- Бобкова Т.В., Потапенко О.В., Дмитриев К.И., Юртаева А.С., Ковеза В.А. Роль оксида ванадия в добавках к катализатору крекинга для снижения выбросов оксидов серы в газах регенерации // Химия под знаком СИГМА: исследования, инновации, технологии. VII Всероссийская научная молодежная школа-конференция: сборник тезисов докладов, 16–18 мая 2023 г., Омск / Институт катализа СО РАН – Новосибирск: ИК СО РАН, 2023.
- Barth J.O., Jentys A., Lercher J.A. Elementary reactions and intermediate species formed during the oxidative regeneration of spent fluid catalytic cracking catalysts // Ind. Eng. Chem. Res. 2004. V. 43. № 12. P. 3097–3104. https://doi.org/10.1021/ie034300b
- Liu Z., Ihl Woo S. Recent advances in catalytic DeNOx science and technology // Catal. Rev. 2006. V. 48. № 1. P. 43–89. https://doi.org/10.1080/01614940500439891
- Wu X., Wang R., Du Y., Zou C., Meng H., Xie X. Performance enhancement of NH3-SCR via employing hydrotalcite-like precursor to induce the decoration of NiO by TiO2 phase // Mol. Catal. 2019. V. 467. P. 150–160. https://doi.org/10.1016/j.mcat.2019.02.004
- Wu X., Feng Y., Du Y., Liu X., Zou C., Li Z. Enhancing DeNOx performance of CoMnAl mixed metal oxides in low-temperature NH3-SCR by optimizing layered double hydroxides (LDHs) precursor template // App. Surf. Sci. 2019. V. 467. P. 802–810. https://doi.org/10.1016/j.apsusc.2018.10.191
- Nova I., Tronconi E. Urea-SCR Technology for deNOx after Treatment of Diesel Exhausts. NY: Springer, 2014. 716 p. https://doi.org/10.100-7/978-1-4899-8071-7
- Jabłońska M., Palkovits R. Nitrogen oxide removal over hydrotalcite-derived mixed metal oxides // Catal. Sci. Technol. 2016. V. 6. № 1. P. 49–72. https://doi.org/10.1039/C5CY00646E
- Iliopoulou E.F., Efthimiadis E.A., Vasalos I.A., Barth J.O., Lercher J.A. Effect of Rh-based additives on NO and CO formed during regeneration of spent FCC catalyst // Appl. Catal. B. 2004. V. 47. № 3. P. 165–175. https://doi.org/10.1016/j.apcatb.2003.08.003
- Liu H.B., Huang Z.Y., Li L.J., Huang J.T., He Z.C., Li C.H., Wu G.B., Wu Z.Y. Preparation of Cu/Co/Fe mixed oxides and their catalytic behavior on HC-SCR DeNOx // Adv. Mat. Res. 2014. V. 1033. P. 1058–1062. https://doi.org/10.4028/www.scientific.net/AMR.1033-1034.1058
- Wen N., Su Y., Deng W., Zhou H., Zhao B. Selective catalytic reduction of NO with C3H6 over CuFe-containing catalysts derived from layered double hydroxides // Fuel. 2021. V. 283. P. 119296. https://doi.org/10.1016/j.fuel.2020.119296
- Li J., Wang S., Zhou L., Luo G. NO reduction by CO over a Fe-based catalyst in FCC regenerator conditions // Chem. Eng. J. 2014. V. 255. P. 126–133. https://doi.org/10.1016/j.cej.2014.06.015
- Tret’yakov V.F., Zakirova A.G., Spozhakina A.A., Gabrovska M.V., Edreva-Kardzhieva R., Petrov L.A. Selective reduction of nitrogen oxides by hydrocarbons on hydrotalcite Co and Ni catalysts // Catal. Ind. 2010. V. 2. P. 62–66. https://doi.org/10.1134/S2070050410010101
- Gómez S.A., Campero A., Martınez-Hernández A., Fuentes G.A. Changes in Cu2+ environment upon wet deactivation of Cu-ZSM-5 deNOx catalysts // Appl. Catal. A. 2000. V. 197. № 1. P. 157–164. https://doi.org/10.1016/S0926-860X(99)00546-3
- Peters A.W., Rudesill J.A., Weatherbee G.D., Rakiewicz E.F., Barbato-Grauso M.J.A. NOx Reduction Compositions for Use in FCC Processes // Patent US. № 6143167. 2000.
- Peters A.W., Rakiewicz E.F., Weatherbee G.D., Zhao X. Reduced NOx Combustion Promoter for Use in FCC Processes // Patent US. № 6165933. 2000.
- Dmitriev K.I., Potapenko O.V., Bobkova T.V., Sorokina T.P., Doronin V.P. Additives for reducing CO and NOx oxides in gases of the FCC catalyst regeneration // AIP Conf. Proc. 2019. V. 2143. № 1. P. 020018. https://doi.org/10.1063/1.5122917
- Lutecki М., Johansson F.B. Copper-containing SOx and NOx removal additives for use in the FCC process // Patent WO. № 2019158635A1. 2019.
- Iwamoto M., Mizuno N., Yahiro, H. Selective catalytic reduction of NO by hydrocarbon in oxidizing atmosphere // Stud. Surf. Sci. Catal. 1993. V. 75. P. 1285–1298. https://doi.org/10.1016/S0167-2991(08)64451-1
- Xin Y., Li Q., Zhang Z. Zeolitic materials for DeNOx selective catalytic reduction // ChemCatChem. 2018. V. 10. № 1. P. 29–41. https://doi.org/10.1002/cctc.201700854
- Komvokis V.G., Iliopoulou E.F., Vasalos I.A., Triantafyllidis K.S., Marshall C.L. Development of optimized Cu–ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives // Appl. Catal. A. 2007. V. 325. № 2. P. 345–352. https://doi.org/10.1016/j.apcata.2007.02.035
- Yuan D., Li X., Zhao Q., Zhao J., Tadé M., Liu S. A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions // J. Catal. 2014. V. 309. P. 268–279. https://doi.org/10.1016/j.jcat.2013.09.010
- Wen B., He M., Costello C. Simultaneous catalytic removal of NOx, SOx, and CO from FCC regenerator // Energy Fuels. 2002. V. 16. № 5. P. 1048–1053. https://doi.org/10.1021/ef010268r
- Zhang X., Wang T., Wang Z., Jin J., Chen Z., Wang G., Chen K., Zhao Z., Peng M. Bifunctional additive for reducing NOx and sulfur transfer in FCC regenerated flue gas and preparation method thereof // Patent CN. № 111420687. 2022.
Supplementary files
