Gidrooblagorazhivanie lignotsellyuloznoy bionefti (obzor)
- Authors: Zasypalov G.O.1, Klimovskiy V.A.1, Abramov E.S.1, Brindukova E.E.2, Stytsenko V.D.1, Glotov A.P.1
-
Affiliations:
- Российский государственный университет нефти и газа (НИУ) имени И.М. Губкина
- Курский государственный аграрный университет им. И.И. Иванова
- Issue: Vol 63, No 6 (2023)
- Pages: 775-808
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655572
- DOI: https://doi.org/10.31857/S0028242123060011
- EDN: https://elibrary.ru/RPNDMB
- ID: 655572
Cite item
Abstract
Keywords
About the authors
G. O. Zasypalov
Российский государственный университет нефти и газа (НИУ) имени И.М. Губкина
Email: gleb.zasypalov@mail.ru
V. A. Klimovskiy
Российский государственный университет нефти и газа (НИУ) имени И.М. Губкина
E. S. Abramov
Российский государственный университет нефти и газа (НИУ) имени И.М. Губкина
E. E. Brindukova
Курский государственный аграрный университет им. И.И. Иванова
V. D. Stytsenko
Российский государственный университет нефти и газа (НИУ) имени И.М. Губкина
A. P. Glotov
Российский государственный университет нефти и газа (НИУ) имени И.М. Губкина
References
- Акинфиев В.К. Соглашение ОПЕК+. Анализ последствий для России // Энергетическая политика. 2020. Т. 1. С. 143.
- Макаров А.А., Митрова Т.А., Кулагин В.А. Прогноз развития энергетики и России 2019. Московская школа управления СКОЛКОВО, 2019. 210 с.
- Тополюк Ю.А., Нехаев А.И., Засыпалов Г.О. Гидродеоксигенация сырья растительного происхождения // Нефтегазохимия. 2021. Т. 1-2. С. 22-27. https://doi.org/10.24412/2310-8266-2021-1-2-22-28
- Topolyuk Y.A., Nekhaev A.I., Zasypalov G.O. Hydrodeoxygenation of plant origin raw materials // Oil & Gas Chemistry. 2021. № 2. P. 22-28.
- Alonso D.M., Wettstein S.G., Dumesic J.A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals // Chemical Society Reviews. 2012. V. 41. № 24. P. 8075. https://doi.org/10.1039/C2CS35188A
- Yan L., Yao Q., Fu Y. Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals // Green Chemistry. 2017. V. 19. № 23. P. 5527-5547. https://doi.org/10.1039/C7GC02503C
- Naranov E., Sadovnikov A., Arapova O., Kuchinskaya T., Usoltsev O., Bugaev A., Janssens K., De Vos D., Maximov A. The in-situ formation of supported hydrous ruthenium oxide in aqueous phase during HDO of lignin-derived fractions // Applied Catalysis B: Environmental. 2023. V. 334. P. 122861. https://doi.org/10.1016/j.apcatb.2023.122861
- Martone P.T., Estevez J.M., Lu F., Ruel K., Denny M.W., Somerville C., Ralph J. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture // Current Biology. 2009. V. 19. № 2. P. 169-175. https://doi.org/10.1016/j.cub.2008.12.031
- Рахманкулов Д.Л., Вильданов Ф.Ш., Николаева С.В., Денисов С.В. Успехи и проблемы производства альтернативных источников топлива и химического сырья. Пиролиз биомассы // Башкирский химический журнал. 2008. V. 15. № 2. P. 36-52.
- Long J., Shu R., Yuan Z., Wang T., Xu Y., Zhang X., Zhang Q., Ma L. Efficient valorization of lignin depolymerization products in the present of NixMg1 - xO // Applied Energy. 2015. V. 157. P. 540-545. https://doi.org/10.1016/j.apenergy.2015.04.011
- Kay Lup A.N., Abnisa F., Wan Daud W.M.A., Aroua M.K. A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds // Journal of Industrial and Engineering Chemistry. 2017. V. 56. P. 1-34. https://doi.org/10.1016/j.jiec.2017.06.049
- de Miguel Mercader F., Groeneveld M.J., Kersten S.R.A., Way N.W.J., Schaverien C.J., Hogendoorn J.A. Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units // Applied Catalysis B: Environmental. 2010. V. 96. № 1-2. P. 57-66. https://doi.org/10.1016/j.apcatb.2010.01.033
- Zhao C., Lercher J.A. Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts // ChemCatChem. 2012. V. 4. № 1. P. 64-68. https://doi.org/10.1002/cctc.201100273
- Ennaert T., Van Aelst J., Dijkmans J., De Clercq R., Schutyser W., Dusselier M., Verboekend D., Sels B.F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass // Chemical Society Reviews. 2016. V. 45. № 3. P. 584-611. https://doi.org/10.1039/C5CS00859J
- Zhu X., Mallinson R.G., Resasco D.E. Role of transalkylation reactions in the conversion of anisole over HZSM-5 // Applied Catalysis A: General. 2010. V. 379. № 1-2. P. 172-181. https://doi.org/10.1016/j.apcata.2010.03.018
- Shafiee S., Topal E. When will fossil fuel reserves be diminished? // Energy Policy. 2009. V. 37. № 1. P. 181-189. https://doi.org/10.1016/j.enpol.2008.08.016
- Naik S.N., Goud V. V., Rout P.K., Dalai A.K. Production of first and second generation biofuels: A comprehensive review // Renewable and sustainable energy reviews. 2010. V. 14. № 2. P. 578-597. https://doi.org/10.1016/j.rser.2009.10.003
- Mittelbach M. Fuels from oils and fats: Recent developments and perspectives // European Journal of Lipid Science and Technology. 2015. V. 117. № 11. P. 1832-1846. https://doi.org/10.1002/ejlt.201500125
- Sun Y., Li C., Li Q., Zhang S., Xu L., Gholizadeh M., Hu X. Pyrolysis of flaxseed residue: Exploration of characteristics of the biochar and bio-oil products // Journal of the Energy Institute. 2021. V. 97. P. 1-12. https://doi.org/10.1016/j.joei.2021.03.020
- Vieira F.R., Romero Luna C.M., Arce G.L.A.F., Ávila I. Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk // Biomass and Bioenergy. 2020. V. 132. P. 105412. https://doi.org/10.1016/j.biombioe.2019.105412
- Tsarpali M., Arora N., Kuhn J.N., Philippidis G.P. Lipid-extracted algae as a source of biomaterials for algae biorefineries // Algal Research. 2021. V. 57. P. 102354. https://doi.org/10.1016/j.algal.2021.102354
- Bechara R., Gomez A., Saint-Antonin V., Schweitzer J.-M., Maréchal F., Ensinas A. Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity // Renewable and Sustainable Energy Reviews. 2018. V. 91. P. 152-164. https://doi.org/10.1016/j.rser.2018.02.020
- Tao J., Yu S., Wu T. Review of China's bioethanol development and a case study of fuel supply, demand and distribution of bioethanol expansion by national application of E10 // Biomass and Bioenergy. 2011. V. 35. № 9. P. 3810-3829. https://doi.org/10.1016/j.biombioe.2011.06.039
- Norkobilov A., Gorri D., Ortiz I. Process flowsheet analysis of pervaporation-based hybrid processes in the production of ethyl tert-butyl ether // Journal of Chemical Technology & Biotechnology. 2017. V. 92. № 6. P. 1167-1177. https://doi.org/10.1002/jctb.5186
- Ayodele B.V., Alsaffar M.A., Mustapa S.I. An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks // J. of Cleaner Production. 2020. V. 245. P. 118857. https://doi.org/10.1016/j.jclepro.2019.118857
- Tokgoz S. The food-fuel-fiber debate // Biofuels, Bioenergy and Food Security. Elsevier, 2019. P. 79-99. https://doi.org/10.1016/B978-0-12-803954-0.00005-X
- Mueller S.A., Anderson J.E., Wallington T.J. Impact of biofuel production and other supply and demand factors on food price increases in 2008 // Biomass and Bioenergy. 2011. V. 35. № 5. P. 1623-1632. https://doi.org/10.1016/j.biombioe.2011.01.030
- Katada N., Iseki Y., Shichi A., Fujita N., Ishino I., Osaki K., Torikai T., Niwa M. Production of ethanol by vapor phase hydration of ethene over tungsta monolayer catalyst loaded on titania // Applied Catalysis A: General. 2008. V. 349. № 1-2. P. 55-61. https://doi.org/10.1016/j.apcata.2008.07.005
- Hoseini S.S., Najafi G., Ghobadian B., Mamat R., Ebadi M.T., Yusaf T. Ailanthus altissima (tree of heaven) seed oil: Characterisation and optimisation of ultrasonication-assisted biodiesel production // Fuel. 2018. V. 220. P. 621-630. https://doi.org/10.1016/j.fuel.2018.01.094
- Васил Р.Г. Стратегическая Программа Исследований2021. М.: Технологическая Платформа "БИОЭНЕРГЕТИКА", 2021. V. 6. 217 с.
- Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels: ASTM D6751-20a. 2023.
- Hoekman S.K., Broch A., Robbins C., Ceniceros E., Natarajan M. Review of biodiesel composition, properties, and specifications // Renewable and Sustainable Energy Reviews. 2012. V. 16. № 1. P. 143-169. https://doi.org/10.1016/j.rser.2011.07.143
- Haryanto A., Hidayat W., Hasanudin U., Iryani D.A., Kim S., Lee S., Yoo J. Valorization of Indonesian wood wastes through pyrolysis: A review // Energies. 2021. V. 14. № 5. P. 1407. https://doi.org/10.3390/en14051407
- Datta A., Hossain A., Roy S. An overview on biofuels and their advantages and disadvantages // Asian Journal of Chemistry. 2019. V. 31. № 8. P. 1851-1858. https://doi.org/10.14233/ajchem.2019.22098
- Madhu P., Kanagasabapathy H., Neethi Manickam I. Cotton shell utilization as a source of biomass energy for bio-oil by flash pyrolysis on electrically heated fluidized bed reactor // Journal of Material Cycles and Waste Management. 2016. V. 18. № 1. P. 146-155. https://doi.org/10.1007/s10163-014-0318-y
- Ighalo J.O., Iwuchukwu F.U., Eyankware O.E., Iwuozor K.O., Olotu K., Bright O.C., Igwegbe C.A. Flash pyrolysis of biomass: A review of recent advances // Clean Technologies and Environmental Policy. 2022. V. 24. № 8. P. 2349-2363. https://doi.org/10.1007/s10098-022-02339-5
- Zhang Q., Chang J., Wang T., Xu Y. Review of biomass pyrolysis oil properties and upgrading research // Energy Conversion and Management. 2007. V. 48. № 1. P. 87-92. https://doi.org/10.1016/j.enconman.2006.05.010
- Pourzolfaghar H., Abnisa F., Wan Daud W.M.A., Aroua M.K. Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: A review // Journal of Analytical and Applied Pyrolysis. 2018. V. 133. P. 117-127. https://doi.org/10.1016/j.jaap.2018.04.013
- Li Y., Zhang C., Liu Y., Tang S., Chen G., Zhang R., Tang X. Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation // Fuel. 2017. V. 189. P. 23-31. https://doi.org/10.1016/j.fuel.2016.10.047
- Aburto J., Amezcua-Allieri M.A. Biodiesel and green diesel fuels: A techno-economic analysis. In: Aslam, M., Shivaji Maktedar, S., Sarma, A.K. (eds) Green Diesel: An Alternative to Biodiesel and Petrodiesel. Advances in Sustainability Science and Technology. Springer, Singapore, 2022. P. 309-324. https://doi.org/10.1007/978-981-19-2235-0_11
- Mortensen P.M., Grunwaldt J.-D., Jensen P.A., Knudsen K.G., Jensen A.D. A review of catalytic upgrading of bio-oil to engine fuels // Applied Catalysis A: General. 2011. V. 407. № 1-2. P. 1-19. https://doi.org/10.1016/j.apcata.2011.08.046
- U.S. Energy Information Administration, Gasoline and Diesel Fuel Update [Electronic resource] // https://www.eia.gov/petroleum/gasdiesel/. 2023.
- Rytter E., Hillestad M., Austbø B., Lamb J.J., Sarker S. Thermochemical production of fuels // Hydrogen, Biomass and Bioenergy. Elsevier, 2020. P. 89-117. https://doi.org/10.1016/B978-0-08-102629-8.00006-2
- Yi-Feng C., Wu Q. Chapter 17 - Production of biodiesel from algal biomass // Biofuels. Elsevier, 2011. P. 399-413. https://doi.org/10.1016/B978-0-12-385099-7.00018-8
- Daneshvar E., Santhosh C., Antikainen E., Bhatnagar A. Microalgal growth and nitrate removal efficiency in different cultivation conditions: Effect of macro and micronutrients and salinity // J. of Environmental Chemical Engineering. 2018. V. 6. № 2. P. 1848-1854. https://doi.org/10.1016/j.jece.2018.02.033
- Isahak W.N.R.W., Hisham M.W.M., Yarmo M.A., Yun Hin T. A review on bio-oil production from biomass by using pyrolysis method // Renewable and Sustainable Energy Reviews. 2012. V. 16. № 8. P. 5910-5923. https://doi.org/10.1016/j.rser.2012.05.039
- Saber M., Nakhshiniev B., Yoshikawa K. A review of production and upgrading of algal bio-oil // Renewable and sustainable energy reviews. 2016. V. 58. P. 918-930. https://doi.org/10.1016/j.rser.2015.12.342
- Brennan L., Owende P. Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products // Renewable and Sustainable Energy Reviews. 2010. V. 14. № 2. P. 557-577. https://doi.org/10.1016/j.rser.2009.10.009
- Fallah Kelarijani A., Gholipour Zanjani N., Kamran Pirzaman A. Ultrasonic assisted transesterification of rapeseed oil to biodiesel using nano magnetic catalysts // Waste and Biomass Valorization. 2020. V. 11. № 6. P. 2613-2621. https://doi.org/10.1007/s12649-019-00593-1
- Karpagam R., Jawaharraj K., Gnanam R. Review on integrated biofuel production from microalgal biomass through the outset of transesterification route: A cascade approach for sustainable bioenergy // Science of the Total Environment. 2021. V. 766. P. 144236. https://doi.org/10.1016/j.scitotenv.2020.144236
- Meier D., van de Beld B., Bridgwater A. V., Elliott D.C., Oasmaa A., Preto F. State-of-the-art of fast pyrolysis in IEA bioenergy member countries // Renewable and Sustainable Energy Reviews. 2013. V. 20. P. 619-641. https://doi.org/10.1016/j.rser.2012.11.061
- Yu I.K.M., Chen H., Abeln F., Auta H., Fan J., Budarin V.L., Clark J.H., Parsons S., Chuck C.J., Zhang S., Luo G., Tsang D.C.W. Chemicals from lignocellulosic biomass: A critical comparison between biochemical, microwave and thermochemical conversion methods // Critical Reviews in Environmental Science and Technology. 2021. V. 51. № 14. P. 1479-1532. https://doi.org/10.1080/10643389.2020.1753632
- Kumar B., Bhardwaj N., Agrawal K., Chaturvedi V., Verma P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept // Fuel Processing Technology. 2020. V. 199. P. 106244. https://doi.org/10.1016/j.fuproc.2019.106244
- Yang Z., Wu Y., Zhang Z., Li H., Li X., Egorov R.I., Strizhak P.A., Gao X. Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects // Renewable and Sustainable Energy Reviews. 2019. V. 103. P. 384-398. https://doi.org/10.1016/j.rser.2018.12.047
- Leibbrandt N.H., Knoetze J.H., Görgens J.F. Comparing biological and thermochemical processing of sugarcane bagasse: An energy balance perspective // Biomass and Bioenergy. 2011. V. 35. № 5. P. 2117-2126. https://doi.org/10.1016/j.biombioe.2011.02.017
- Kumar A., Jones D., Hanna M. Thermochemical biomass gasification: A review of the current status of the technology // Energies. 2009. V. 2. № 3. P. 556-581. https://doi.org/10.3390/en20300556
- Нхучхен Д.Р. Б.П., А.Б. Всесторонний обзор торрефикации биомассы // Энергетическое биотопливо. 2014. P. 1-56.
- Osman A.I., Mehta N., Elgarahy A.M., Al-Hinai A., Al-Muhtaseb A.H., Rooney D.W. Conversion of biomass to biofuels and life cycle assessment: A review // Environmental Chemistry Letters. 2021. V. 19. № 6. P. 4075-4118. https://doi.org/10.1007/s10311-021-01273-0
- Scarsella M., de Caprariis B., Damizia M., De Filippis P. Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review // Biomass and Bioenergy. 2020. V. 140. P. 105662. https://doi.org/10.1016/j.biombioe.2020.105662
- Bridgwater A.V. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass // Catalysis Today. 1996. V. 29. № 1-4. P. 285-295. https://doi.org/10.1016/0920-5861(95)00294-4
- Kan T., Strezov V., Evans T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters // Renewable and Sustainable Energy Reviews. 2016. V. 57. P. 1126-1140. https://doi.org/10.1016/j.rser.2015.12.185
- Wang M., Zhang S.-L., Duan P.-G. Slow pyrolysis of biomass: Effects of effective hydrogen-to-carbon atomic ratio of biomass and reaction atmospheres // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2023. V. 45. № 1. P. 2637-2650. https://doi.org/10.1080/15567036.2019.1665150
- Amutio M., Lopez G., Artetxe M., Elordi G., Olazar M., Bilbao J. Influence of temperature on biomass pyrolysis in a conical spouted bed reactor // Resources, Conservation and Recycling. 2012. V. 59. P. 23-31. https://doi.org/10.1016/j.resconrec.2011.04.002
- Himmel M., Tucker M., Baker J., Rivard C., Oh K., Grohmann K. Comminution of biomass: Hammer and knife mills. Biotechnology and Bioenergy Symposium, 1986.
- Burhenne L., Messmer J., Aicher T., Laborie M.-P. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis // Journal of Analytical and Applied Pyrolysis. 2013. V. 101. P. 177-184. https://doi.org/10.1016/j.jaap.2013.01.012
- Stals M., Thijssen E., Vangronsveld J., Carleer R., Schreurs S., Yperman J. Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals // Journal of Analytical and Applied Pyrolysis. 2010. V. 87. № 1. P. 1-7. https://doi.org/10.1016/j.jaap.2009.09.003
- Alvarez J., Lopez G., Amutio M., Bilbao J., Olazar M. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor // Fuel. 2014. V. 128. P. 162-169. https://doi.org/10.1016/j.fuel.2014.02.074
- Venderbosch R.H., Prins W. Fast pyrolysis technology development // Biofuels, Bioproducts and Biorefining. 2010. V. 4. № 2. P. 178-208. https://doi.org/10.1002/bbb.205
- Blanquet E., Williams P.T. Biomass pyrolysis coupled with non-thermal plasma/catalysis for hydrogen production: Influence of biomass components and catalyst properties // Journal of Analytical and Applied Pyrolysis. 2021. V. 159. P. 105325. https://doi.org/10.1016/j.jaap.2021.105325
- Rony A.H., Kong L., Lu W., Dejam M., Adidharma H., Gasem K.A.M., Zheng Y., Norton U., Fan M. Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis // Bioresource Technology. 2019. V. 284. P. 466-473. https://doi.org/10.1016/j.biortech.2019.03.049
- Wang L., Ok Y.S., Tsang D.C.W., Alessi D.S., Rinklebe J., Wang H., Mašek O., Hou R., O'Connor D., Hou D. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment // Soil Use and Management. 2020. V. 36. № 3. P. 358-386. https://doi.org/10.1111/sum.12592
- Heo H.S., Park H.J., Park Y.-K., Ryu C., Suh D.J., Suh Y.-W., Yim J.-H., Kim S.-S. Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed // Bioresource Technology. 2010. V. 101. № 1. P. S91-S96. https://doi.org/10.1016/j.biortech.2009.06.003
- Thangalazhy-Gopakumar S., Adhikari S., Ravindran H., Gupta R.B., Fasina O., Tu M., Fernando S.D. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor // Bioresource Technology. 2010. V. 101. № 21. P. 8389-8395. https://doi.org/10.1016/j.biortech.2010.05.040
- Ortega J. V., Renehan A.M., Liberatore M.W., Herring A.M. Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks // Journal of Analytical and Applied Pyrolysis. 2011. V. 91. № 1. P. 190-198. https://doi.org/10.1016/j.jaap.2011.02.007
- Cao J.-P., Xiao X.-B., Zhang S.-Y., Zhao X.-Y., Sato K., Ogawa Y., Wei X.-Y., Takarada T. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste // Bioresource Technology. 2011. V. 102. № 2. P. 2009-2015. https://doi.org/10.1016/j.biortech.2010.09.057
- Önal E.P., Uzun B.B., Pütün A.E. Steam pyrolysis of an industrial waste for bio-oil production // Fuel Processing Technology. 2011. V. 92. № 5. P. 879-885. https://doi.org/10.1016/j.fuproc.2010.12.006
- Mullen C.A., Boateng A.A., Goldberg N.M., Lima I.M., Laird D.A., Hicks K.B. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis // Biomass and Bioenergy. 2010. V. 34. № 1. P. 67-74. https://doi.org/10.1016/j.biombioe.2009.09.012
- Manyà J.J. Advanced Carbon Materials from Biomass: An overview. 2019. 164 p. https://doi.org/10.5281/zenodo.3233733
- Chen X., Che Q., Li S., Liu Z., Yang H., Chen Y., Wang X., Shao J., Chen H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield // Fuel Processing Technology. 2019. V. 196. P. 106180. https://doi.org/10.1016/j.fuproc.2019.106180
- Balat M. Mechanisms of thermochemical biomass conversion processes. Part 1: Reactions of pyrolysis // Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2008. V. 30. № 7. P. 620-635. https://doi.org/10.1080/15567030600817258
- Zhu C., Maduskar S., Paulsen A.D., Dauenhauer P.J. Alkaline earth metal catalyzed thin-film pyrolysis of cellulose // ChemCatChem. 2016. V. 8. № 4. P. 818-829. https://doi.org/10.1002/cctc.201501235
- Nzihou A., Stanmore B., Lyczko N., Minh D.P. The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review // Energy. 2019. V. 170. P. 326-337. https://doi.org/10.1016/j.energy.2018.12.174
- Нехаев А.И., Максимов А.Л. Получение ароматических углеводородов из биомассы (обзор) // Нефтехимия. 2021. Т. 61. № 1. С. 21-41. https://doi.org/10.31857/S0028242121010020
- Nekhaev A.I., Maksimov A.L. Production of aromatic hydrocarbons from biomass // Petrol. Chemistry. 2021. V. 61. № 1. P. 15-34. https://doi.org/10.1134/S0965544121010023.
- Kibet J., Khachatryan L., Dellinger B. Molecular products and radicals from pyrolysis of lignin // Environmental Science & Technology. 2012. V. 46. № 23. P. 12994-13001. https://doi.org/10.1021/es302942c
- Graça I., Lopes J.M., Ribeiro M.F., Ramôa Ribeiro F., Cerqueira H.S., de Almeida M.B.B. Catalytic cracking in the presence of guaiacol // Applied Catalysis B: Environmental. 2011. V. 101. № 3-4. P. 613-621. https://doi.org/10.1016/j.apcatb.2010.11.002
- Domine M.E., van Veen A.C., Schuurman Y., Mirodatos C. Coprocessing of oxygenated biomass compounds and hydrocarbons for the production of sustainable fuel // ChemSusChem. 2008. V. 1. № 3. P. 179-181. https://doi.org/10.1002/cssc.200700049
- Elliott D.C., Hart T.R. Catalytic hydroprocessing of chemical models for bio-oil // Energy & Fuels. 2009. V. 23. № 2. P. 631-637. https://doi.org/10.1021/ef8007773
- Luque R., Clark J.H., Yoshida K., Gai P.L. Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons® // Chemical Communications. 2009. № 35. P. 5305. https://doi.org/10.1039/B911877B
- Han Y., Gholizadeh M., Tran C.-C., Kaliaguine S., Li C.-Z., Olarte M., Garcia-Perez M. Hydrotreatment of pyrolysis bio-oil: A review // Fuel Processing Technology. 2019. V. 195. P. 106140. https://doi.org/10.1016/j.fuproc.2019.106140
- French R.J., Hrdlicka J., Baldwin R. Mild hydrotreating of biomass pyrolysis oils to produce a suitable refinery feedstock // Environmental Progress & Sustainable Energy. 2010. V. 29. № 2. P. 142-150. https://doi.org/10.1002/ep.10419
- Samolada M.C., Baldauf W., Vasalos I.A. Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking // Fuel. 1998. V. 77. № 14. P. 1667-1675. https://doi.org/10.1016/S0016-2361(98)00073-8
- Kim P., Johnson A., Edmunds C.W., Radosevich M., Vogt F., Rials T.G., Labbé N. Surface functionality and carbon structures in lignocellulosic-derived biochars Produced by fast pyrolysis // Energy & Fuels. 2011. V. 25. № 10. P. 4693-4703. https://doi.org/10.1021/ef200915s
- Mortensen P.M., Gardini D., Damsgaard C.D., Grunwaldt J.-D., Jensen P.A., Wagner J.B., Jensen A.D. Deactivation of Ni-MoS2 by bio-oil impurities during hydrodeoxygenation of phenol and octanol // Applied Catalysis A: General. 2016. V. 523. P. 159-170. https://doi.org/10.1016/j.apcata.2016.06.002
- Li K., Wang R., Chen J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts // Energy & Fuels. 2011. V. 25. № 3. P. 854-863. https://doi.org/10.1021/ef101258j
- Mortensen P.M., Grunwaldt J.-D., Jensen P.A., Jensen A.D. Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2 // Catalysis Today. 2016. V. 259. P. 277-284. https://doi.org/10.1016/j.cattod.2015.08.022
- de Caprariis B., De Filippis P., Petrullo A., Scarsella M. Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production // Fuel. 2017. V. 208. P. 618-625. https://doi.org/10.1016/j.fuel.2017.07.054
- Isahak W.N.R.W., Hisham M.W.M., Yarmo M.A., Yun Hin T. A review on bio-oil production from biomass by using pyrolysis method // Renewable and Sustainable Energy Reviews. 2012. V. 16. № 8. P. 5910-5923. https://doi.org/10.1016/j.rser.2012.05.039
- Lyu G., Wu S., Zhang H. Estimation and comparison of bio-oil сomponents from different pyrolysis conditions // Frontiers in Energy Research. 2015. V. 3. https://doi.org/10.3389/fenrg.2015.00028
- Ambursa M.M., Sudarsanam P., Voon L.H., Hamid S.B.A., Bhargava S.K. Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels // Fuel Processing Technology. 2017. V. 162. P. 87-97. https://doi.org/10.1016/j.fuproc.2017.03.008
- Doyle A.M., Shaikhutdinov S.K., Jackson S.D., Freund H. Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals? // Angewandte Chemie International Edition. 2003. V. 42. № 42. P. 5240-5243. https://doi.org/10.1002/anie.200352124
- Li X., Chen G., Liu C., Ma W., Yan B., Zhang J. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review // Renewable and Sustainable Energy Reviews. 2017. V. 71. P. 296-308. https://doi.org/10.1016/j.rser.2016.12.057
- Zhang X., Wang T., Ma L., Zhang Q., Yu Y., Liu Q. Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2-SiO2 for guaiacol hydrodeoxygenation // Catalysis Communications. 2013. V. 33. P. 15-19. https://doi.org/10.1016/j.catcom.2012.12.011
- Tran N.T.T., Uemura Y., Ramli A. Hydrodeoxygenation of guaiacol over Al-MCM-41 supported metal catalysts: A comparative study of Co and Ni // Procedia Engineering. 2016. V. 148. P. 1252-1258. https://doi.org/10.1016/j.proeng.2016.06.488
- Vutolkina A.V., Baigildin I.G., Glotov A.P., Pimerzin Al.A., Akopyan A.V., Maximov A.L., Karakhanov E.A. Hydrodeoxygenation of guaiacol via in situ H2 generated through a water gas shift reaction over dispersed NiMoS catalysts from oil-soluble precursors: Tuning the selectivity towards cyclohexene // Applied Catalysis B: Environmental. 2022. V. 312. P. 121403. https://doi.org/10.1016/j.apcatb.2022.121403
- Furimsky E. Catalytic hydrodeoxygenation // Applied Catalysis A: General. 2000. V. 199. № 2. P. 147-190. https://doi.org/10.1016/S0926-860X(99)00555-4
- Gevert B.S., Otterstedt J.-E., Massoth F.E. Kinetics of the HDO of methyl-substituted phenols // Applied Catalysis. 1987. V. 31. № 1. P. 119-131. https://doi.org/10.1016/S0166-9834(00)80671-5
- Яковлев В.А., Быкова М.В., Хромова С.А. Проблемы стабильности никельсодержащих катализаторов гидродеоксигенации продуктов пиролиза биомассы // Катализ в промышленности. 2012. V. 4. P. 48.
- Yakovlev V.A., Bykova M.V., Khromova S.A. Stability of nickel-containing catalysts for hydrodeoxygenation of biomass pyrolysis products // Catalysis in Industry. 2012. V. 4. № 4. P. 324-339. https://doi.org/10.1134/S2070050412040204.
- Furimsky E. Chemistry of catalytic hydrodeoxygenation // Catalysis Reviews. 1983. V. 25. № 3. P. 421-458. https://doi.org/10.1080/01614948308078052
- Viljava T.-R., Komulainen S., Selvam T., Krause A.O.I. Stability of CoMo/Al2O3 catalysts: Effect of HDO cycles on HDS. 1999. V. 127. P. 145-152. https://doi.org/10.1016/S0167-2991(99)80403-0
- Vogelzang M., Li C.-L., Schuit G.C.A., Gates B.C., Petrakis L. Hydrodeoxygenation of 1-naphthol: Activities and stabilities of molybdena and related catalysts // J. of Catalysis. 1983. V. 84. № 1. P. 170-177. https://doi.org/10.1016/0021-9517(83)90095-7
- Ambursa M.M., Juan J.C., Yahaya Y., Taufiq-Yap Y.H., Lin Y.-C., Lee H.V. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts // Renewable and Sustainable Energy Reviews. 2021. V. 138. P. 110667. https://doi.org/10.1016/j.rser.2020.110667
- Ren J., Cao J.-P., Zhao X.-Y. Fabrication strategies of Ni-based catalysts in reforming of biomass tar/tar model compounds // Applications in Energy and Combustion Science. 2022. V. 9. P. 100053. https://doi.org/10.1016/j.jaecs.2021.100053
- Zhu C., Cao J.-P., Zhao X.-Y., Xie T., Zhao M., Wei X.-Y. Bimetallic effects in the catalytic hydrogenolysis of lignin and its model compounds on nickel-ruthenium catalysts // Fuel Processing Technology. 2019. V. 194. P. 106126. https://doi.org/10.1016/j.fuproc.2019.106126
- Tran N.T.T., Uemura Y., Chowdhury S., Ramli A. Vapor-phase hydrodeoxygenation of guaiacol on Al-MCM-41 supported Ni and Co catalysts // Applied Catalysis A: General. 2016. V. 512. P. 93-100. https://doi.org/10.1016/j.apcata.2015.12.021
- Mortensen P.M., Grunwaldt J.-D., Jensen P.A., Jensen A.D. Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil // ACS Catalysis. 2013. V. 3. № 8. P. 1774-1785. https://doi.org/10.1021/cs400266e
- Li G., Han J., Wang H., Zhu X., Ge Q. Role of dissociation of phenol in its selective hydrogenation on Pt(111) and Pd(111) // ACS Catalysis. 2015. V. 5. № 3. P. 2009-2016. https://doi.org/10.1021/cs501805y
- Tan Q., Wang G., Nie L., Dinse A., Buda C., Shabaker J., Resasco D.E. Different product distributions and mechanistic aspects of the hydrodeoxygenation of m-cresol over platinum and ruthenium catalysts // ACS Catalysis. 2015. V. 5. № 11. P. 6271-6283. https://doi.org/10.1021/acscatal.5b00765
- Foraita S., Fulton J.L., Chase Z.A., Vjunov A., Xu P., Baráth E., Camaioni D.M., Zhao C., Lercher J.A. Impact of the oxygen defects and the hydrogen concentration on the surface of tetragonal and monoclinic ZrO2 on the reduction rates of stearic acid on Ni/ZrO2 // Chemistry - A European Journal. 2015. V. 21. № 6. P. 2423-2434. https://doi.org/10.1002/chem.201405312
- Pan Z., Wang R., Nie Z., Chen J. Effect of a second metal (Co, Fe, Mo and W) on performance of Ni2P/SiO2 for hydrodeoxygenation of methyl laurate // Journal of Energy Chemistry. 2016. V. 25. № 3. P. 418-426. https://doi.org/10.1016/j.jechem.2016.02.007
- Bykova M.V., Ermakov D.Yu., Kaichev V.V., Bulavchenko O.A., Saraev A.A., Lebedev M.Yu., Yakovlev V.А. Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study // Applied Catalysis B: Environmental. 2012. V. 113-114. P. 296-307. https://doi.org/10.1016/j.apcatb.2011.11.051
- Yao Y., Goodman D.W. Direct evidence of hydrogen spillover from Ni to Cu on Ni-Cu bimetallic catalysts // Journal of Molecular Catalysis A: Chemical. 2014. V. 383-384. P. 239-242. https://doi.org/10.1016/j.molcata.2013.12.013
- Khromova S.A., Smirnov A.A., Bulavchenko O.A., Saraev A.A., Kaichev V.V., Reshetnikov S.I., Yakovlev V.A. Anisole hydrodeoxygenation over Ni-Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity // Applied Catalysis A: General. 2014. V. 470. P. 261-270. https://doi.org/10.1016/j.apcata.2013.10.046
- Guo Q., Wu M., Wang K., Zhang L., Xu X. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni-Cu/ZrO2 catalysts // Industrial & Engineering Chemistry Research. 2015. V. 54. № 3. P. 890-899. https://doi.org/10.1021/ie5042935
- Smirnov A.A., Khromova S.A., Ermakov D.Yu., Bulavchenko O.A., Saraev A.A., Aleksandrov P.V., Kaichev V.V., Yakovlev V.A. The composition of Ni-Mo phases obtained by NiMoOx-SiO2 reduction and their catalytic properties in anisole hydrogenation // Applied Catalysis A: General. 2016. V. 514. P. 224-234. https://doi.org/10.1016/j.apcata.2016.01.025
- Smirnov A.A., Geng Zh., Khromova S.A., Zavarukhin S.G., Bulavchenko O.A., Saraev A.A., Kaichev V.V., Ermakov D.Yu., Yakovlev V.A. Nickel molybdenum carbides: Synthesis, characterization, and catalytic activity in hydrodeoxygenation of anisole and ethyl caprate // Journal of Catalysis. 2017. V. 354. P. 61-77. https://doi.org/10.1016/j.jcat.2017.07.009
- Vajglová Z., Yevdokimova O., Medina A., Eränen K., Tirri T., Hemming J., Lindén J., Angervo I., Damlin P., Doronkin D.E., Mäki-Arvela P., Murzin D.Yu. Solventless hydrodeoxygenation of isoeugenol and dihydroeugenol in batch and continuous modes over a zeolite-supported FeNi catalyst // Sustainable Energy & Fuels. 2023. V. 7. № 18. P. 4486-4504. https://doi.org/10.1039/D3SE00371J
- He T., Liu X., Ge Y., Han D., Li J., Wang Z., Wu J. Gas phase hydrodeoxygenation of anisole and guaiacol to aromatics with a high selectivity over Ni-Mo/SiO2 // Catalysis Communications. 2017. V. 102. P. 127-130. https://doi.org/10.1016/j.catcom.2017.09.011
- Li K., Wang R., Chen J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts // Energy & Fuels. 2011. V. 25. № 3. P. 854-863. https://doi.org/10.1021/ef101258j
- Argyle M., Bartholomew C. Heterogeneous catalyst deactivation and regeneration: A review // Catalysts. 2015. V. 5. № 1. P. 145-269. https://doi.org/10.3390/catal5010145
- Zhao C., Yu Y., Jentys A., Lercher J.A. Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxygenation // Applied Catalysis B: Environmental. 2013. V. 132-133. P. 282-292. https://doi.org/10.1016/j.apcatb.2012.11.042
- Dickinson J.G., Savage P.E. Development of NiCu catalysts for aqueous-phase hydrodeoxygenation // ACS Catalysis. 2014. V. 4. № 8. P. 2605-2615. https://doi.org/10.1021/cs500562u
- Lee C.R., Yoon J.S., Suh Y.-W., Choi J.-W., Ha J.-M., Suh D.J., Park Y.-K. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol // Catalysis Communications. 2012. V. 17. P. 54-58. https://doi.org/10.1016/j.catcom.2011.10.011
- Bie Y., Lehtonen J., Kanervo J. Hydrodeoxygenation (HDO) of methyl palmitate over bifunctional Rh/ZrO2 catalyst: Insights into reaction mechanism via kinetic modeling // Applied Catalysis A: General. 2016. V. 526. P. 183-190. https://doi.org/10.1016/j.apcata.2016.08.030
- Куликов Л.А., Макеева Д.А. Калинина М.А., Чередниченко К.А., Максимов А.Л., Караханов Э.А. Pt- и Ru-катализаторы на основе пористого ароматического каркаса для гидрирования компонентов лигнинной бионефти // Нефтехимия. 2021. Т. 61. № 4. С. 461-472. https://doi.org/10.31857/S002824212104002X
- Kulikov L.A., Makeeva D.A., Kalinina M.A., Cherednichenko K.A., Maximov A.L., Karakhanov E.A. Pt and Ru catalysts based on porous aromatic frameworks for hydrogenation of lignin biofuel components // Petrol. Chemistry. 2021. V. 61. № 7. P. 711-720. https://doi.org/10.1134/S0965544121070045.
- Ruddy D.A., Schaidle J.A., Ferrell III J.R., Wang J., Moens L., Hensley J.E. Recent advances in heterogeneous catalysts for bio-oil upgrading via "ex situ catalytic fast pyrolysis": catalyst development through the study of model compounds // Green Chem. 2014. V. 16. № 2. P. 454-490. https://doi.org/10.1039/C3GC41354C
- Besson M., Descorme C., Bernardi M., Gallezot P., di Gregorio F., Grosjean N., Pham Minh D., Pintar A. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges // Environmental Technology. 2010. V. 31. № 13. P. 1441-1447. https://doi.org/10.1080/09593331003628065
- Wildschut J., Mahfud F.H., Venderbosch R.H., Heeres H.J. Hydrotreatment of fast pyrolysis oil using heterogeneous Noble-metal catalysts // Industrial & Engineering Chemistry Research. 2009. V. 48. № 23. P. 10324-10334. https://doi.org/10.1021/ie9006003
- Gutierrez A., Kaila R.K., Honkela M.L., Slioor R., Krause A.O.I. Hydrodeoxygenation of guaiacol on noble metal catalysts // Catalysis Today. 2009. V. 147. № 3-4. P. 239-246. https://doi.org/10.1016/j.cattod.2008.10.037
- Zanuttini M.S., Lago C.D., Querini C.A., Peralta M.A. Deoxygenation of m-cresol on Pt/γ-Al2O3 catalysts // Catalysis Today. 2013. V. 213. P. 9-17. https://doi.org/10.1016/j.cattod.2013.04.011
- Караханов Э.А., Бороноев М.П., Филиппова Т.Ю., Максимов А.Л. Гидрирование гваякола в водной среде на палладиевом катализаторе, нанесенном на мезопористый дендримерсодержащий носитель // Нефтехимия. 2018. Т. 58. № 3. С. 302-306. https://doi.org/10.7868/S0028242118030073
- Karakhanov E.A., Boronoev M.P., Filippova T.Yu., Maksimov A.L. Guaiacol hydrogenation in an aqueous medium in the presence of a palladium catalyst supported on a mesoporous dendrimer-containing polymer // Petrol. Chemistry. 2018. V. 58. № 5. P. 407-411. https://doi.org/10.1134/S0965544118050080.
- Foster A.J., Do P.T.M., Lobo R.F. The synergy of the support acid function and the metal function in the catalytic hydrodeoxygenation of m-cresol // Topics in Catalysis. 2012. V. 55. № 3-4. P. 118-128. https://doi.org/10.1007/s11244-012-9781-7
- Hong Y., Zhang H., Sun J., Ayman K.M., Hensley A.J.R., Gu M., Engelhard M.H., McEwen J.-S., Wang Y. Synergistic catalysis between Pd and Fe in gas phase hydrodeoxygenation of m-cresol // ACS Catalysis. 2014. V. 4. № 10. P. 3335-3345. https://doi.org/10.1021/cs500578g
- Hong Y.-K., Lee D.-W., Eom H.-J., Lee K.-Y. The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol // Applied Catalysis B: Environmental. 2014. V. 150-151. P. 438-445. https://doi.org/10.1016/j.apcatb.2013.12.045
- Echeandia S., Pawelec B., Barrio V.L., Arias P.L., Cambra J.F., Loricera C.V., Fierro J.L.G. Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils // Fuel. 2014. V. 117. P. 1061-1073. https://doi.org/10.1016/j.fuel.2013.10.011
- Karakhanov E., Maximov A., Terenina M., Vinokurov V., Kulikov L., Makeeva D., Glotov A. Selective hydrogenation of terminal alkynes over palladium nanoparticles within the pores of amino-modified porous aromatic frameworks // Catalysis Today. 2020. V. 357. P. 176-184. https://doi.org/10.1016/j.cattod.2019.05.028
- Hensley A.J.R., Wang Y., McEwen J.-S. Adsorption of phenol on Fe (110) and Pd (111) from first principles // Surface Science. 2014. V. 630. P. 244-253. https://doi.org/10.1016/j.susc.2014.08.003
- Ardiyanti A.R., Gutierrez A., Honkela M.L., Krause A.O.I., Heeres H.J. Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono- and bimetallic (Pt, Pd, Rh) catalysts // Applied Catalysis A: General. 2011. V. 407. № 1-2. P. 56-66. https://doi.org/10.1016/j.apcata.2011.08.024
- Gao D., Schweitzer C., Hwang H.T., Varma A. Conversion of Guaiacol on Noble metal catalysts: reaction performance and deactivation studies // Industrial & Engineering Chemistry Research. 2014. V. 53. № 49. P. 18658-18667. https://doi.org/10.1021/ie500495z
- Roldugina E.A., Naranov E.R., Maximov A.L., Karakhanov E.A. Hydrodeoxygenation of guaiacol as a model compound of bio-oil in methanol over mesoporous noble metal catalysts // Applied Catalysis A: General. 2018. V. 553. P. 24-35. https://doi.org/10.1016/j.apcata.2018.01.008
- Шакиров И.И., Бороноев М.П., Золотухина А.В., Максимов А.Л., Караханов Э.А. Рутений- и палладийсодержащие катализаторы на основе мезопористых полимерных наносфер в гидрировании гваякола // Наногетерогенный катализ. 2020. Т. 5. № 2. С. 120-124. https://doi.org/10.1134/S2414215820020100
- Shakirov I.I., Boronoev M.P., Zolotukhina A.V., Maximov A.L., Karakhanov E.A. Ruthenium- and palladium-containing catalysts based on mesoporous polymer nanospheres in guaiacol hydrogenation // Petrol. Chemistry. 2020. V. 60. № 10. P. 1136-1140. https://doi.org/10.1134/S0965544120100102.
- Li W., Wang H., Wu X., Betancourt L.E., Tu C., Liao M., Cui X., Li F., Zheng J., Li R. Ni/hierarchical ZSM-5 zeolites as promising systems for phenolic bio-oil upgrading: Guaiacol hydrodeoxygenation // Fuel. 2020. V. 274. P. 117859. https://doi.org/10.1016/j.fuel.2020.117859
- Dang R., Ma X., Luo J., Zhang Y., Fu J., Li C., Yang N. Hydrodeoxygenation of 2-methoxy phenol: Effects of catalysts and process parameters on conversion and products selectivity // J. the Energy Institute. 2020. V. 93. № 4. P. 1527-1534. https://doi.org/10.1016/j.joei.2020.01.015
- Sankaranarayanan T.M., Berenguer A., OchoaHernández C., Moreno I., Jana P., Coronado J.M., Serrano D.P., Pizarro P. Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: Effect of metal and support properties // Catalysis Today. 2015. V. 243. P. 163-172. https://doi.org/10.1016/j.cattod.2014.09.004
- Ролдугина Е. А., Шаяхметов Н. Н., Максимов А. Л., Караханов Э. А. Гидродеоксигенация фурфурола в присутствии рутениевых катализаторов на основе мезопористого носителя Al-HMS // Журнал прикладной химии. 2019. Т. 92. № 9. С. 1214-1224. https://doi.org/10.1134/S0044461819090159
- Roldugina E.A., Shayakhmetov N.N., Maksimov A.L., Karakhanov E.A. Hydro-Oxygenation of Furfural in the Presence of Ruthenium Catalysts Based on Al-HMS Mesoporous Support // Russian J. of Applied Chemistry. 2019. V. 92. № 9. P. 1306-1315. https://doi.org/10.1134/S1070427219090167.
- Bjelić A., Grilc M., Huš M., Likozar B. Hydrogenation and hydrodeoxygenation of aromatic lignin monomers over Cu/C, Ni/C, Pd/C, Pt/C, Rh/C and Ru/C catalysts: Mechanisms, reaction micro-kinetic modelling and quantitative structure-activity relationships // Chemical Engineering J. 2019. V. 359. P. 305-320. https://doi.org/10.1016/j.cej.2018.11.107
- Žula M., Grilc M., Likozar B. Hydrocracking, hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics and transport phenomena // Chemical Engineering Journal. 2022. V. 444. P. 136564. https://doi.org/10.1016/j.cej.2022.136564
- Tieuli S., Mäki-Arvela P., Peurla M., Eränen K., Wärnå J., Cruciani G., Menegazzo F., Murzin D.Yu., Signoretto M. Hydrodeoxygenation of isoeugenol over Ni-SBA-15: Kinetics and modelling // Applied Catalysis A: General. 2019. V. 580. P. 1-10. https://doi.org/10.1016/j.apcata.2019.04.028
- Liu Q., Zuo H., Zhang Q., Wang T., Ma L. Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts // Chinese Journal of Catalysis. 2014. V. 35. № 5. P. 748-756. https://doi.org/10.1016/S1872-2067(12)60710-4
- Weingarten R., Tompsett G.A., Conner W.C., Huber G.W. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Brønsted acid sites // J. of Catalysis. 2011. V. 279. № 1. P. 174-182. https://doi.org/10.1016/j.jcat.2011.01.013
- Zacharopoulou V., Lemonidou A. olefins from biomass intermediates: A review // Catalysts. 2017. V. 8. № 1. P. 2. https://doi.org/10.3390/catal8010002
- Santacesaria E. Role of basic and acid sites in the bimolecular dehydration of alcohols catalyzed by HY zeolite // Journal of Catalysis. 1984. V. 90. № 1. P. 1-9. https://doi.org/10.1016/0021-9517(84)90077-0
- Weitkamp J. Zeolites and catalysis // Solid State Ionics. 2000. V. 131. № 1-2. P. 175-188. https://doi.org/10.1016/S0167-2738(00)00632-9
- Zhao C., Kasakov S., He J., Lercher J.A. Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation // J. of Catalysis. 2012. V. 296. P. 12-23. https://doi.org/10.1016/j.jcat.2012.08.017
- Ohta H., Yamamoto K., Hayashi M., Hamasaka G., Uozumi Y., Watanabe Y. Low temperature hydrodeoxygenation of phenols under ambient hydrogen pressure to form cyclohexanes catalysed by Pt nanoparticles supported on H-ZSM-5 // Chemical Communications. 2015. V. 51. № 95. P. 17000-17003. https://doi.org/10.1039/C5CC05607A
- Song W., Liu Y., Baráth E., Zhao C., Lercher J.A. Synergistic effects of Ni and acid sites for hydrogenation and C-O bond cleavage of substituted phenols // Green Chemistry. 2015. V. 17. № 2. P. 1204-1218. https://doi.org/10.1039/C4GC01798F
- Resasco D.E. What should we demand from the catalysts responsible for upgrading biomass pyrolysis oil? // The Journal of Physical Chemistry Letters. 2011. V. 2. № 18. P. 2294-2295. https://doi.org/10.1021/jz201135x
- Graça I., Comparot J.-D., Laforge S., Magnoux P., Lopes J.M., Ribeiro M.F., Ramôa Ribeiro F. Influence of phenol addition on the H-ZSM-5 zeolite catalytic properties during methylcyclohexane transformation // Energy & Fuels. 2009. V. 23. № 9. P. 4224-4230. https://doi.org/10.1021/ef9003472
- Serrano D.P., Melero J.A., Coronado J.M., Pizarro P., Morales G. in Zeolites in Catalysis: Properties and Applications, Ed. Čejka J., Morris R.E., Nachtigall P. The Royal Society of Chemistry, 2017. Ch. 12. P. 441-480. https://doi.org/10.1039/9781788010610
- Wang C., Tian Z., Wang L., Xu R., Liu Q., Qu W., Ma H., Wang B. One-step hydrotreatment of vegetable oil to produce high quality diesel-range alkanes // ChemSusChem. 2012. V. 5. № 10. P. 1974-1983. https://doi.org/10.1002/cssc.201200219
- Shafaghat H., Sirous Rezaei P., Daud W.M.A.W. Catalytic hydrogenation of phenol, cresol and guaiacol over physically mixed catalysts of Pd/C and zeolite solid acids // RSC Advances. 2015. V. 5. № 43. P. 33990-33998. https://doi.org/10.1039/C5RA00367A
- Berenguer A., Bennett J.A., Hunns J., Moreno I., Coronado J.M., Lee A.F., Pizarro P., Wilson K., Serrano D.P. Catalytic hydrodeoxygenation of m-cresol over Ni2P/hierarchical ZSM-5 // Catalysis Today. 2018. V. 304. P. 72-79. https://doi.org/10.1016/j.cattod.2017.08.032
- Lee H.W., Jun B.R., Kim H., Kim D.H., Jeon J.-K., Park S.H., Ko C.H., Kim T.-W., Park Y.-K. Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites // Energy. 2015. V. 81. P. 33-40. https://doi.org/10.1016/j.energy.2014.11.058
- Peng B., Yao Y., Zhao C., Lercher J.A. Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts // Angewandte Chemie Inter. Edition. 2012. V. 51. № 9. P. 2072-2075. https://doi.org/10.1002/anie.201106243
- Wang L., Zhang J., Yi X., Zheng A., Deng F., Chen C., Ji Y., Liu F., Meng X., Xiao F.-S. Mesoporous ZSM-5 zeolite-supported ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules // ACS Catalysis. 2015. V. 5. № 5. P. 2727-2734. https://doi.org/10.1021/acscatal.5b00083
- Lee H., Kim Y.-M., Jung K. Bin, Jae J., Jung S.-C., Jeon J.-K., Park Y.-K. Catalytic hydrodeoxygenation of Geodae-Uksae pyrolysis oil over Ni/desilicated HZSM-5 // J. of Cleaner Production. 2018. V. 174. P. 763-770. https://doi.org/10.1016/j.jclepro.2017.10.315
- Wang Y., He T., Liu K., Wu J., Fang Y. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis // Bioresource Technology. 2012. V. 108. P. 280-284. https://doi.org/10.1016/j.biortech.2011.12.132
- Tyrone Ghampson I., Sepúlveda C., Garcia R., García Fierro J.L., Escalona N., DeSisto W.J. Comparison of alumina- and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol // Applied Catalysis A: General. 2012. V. 435-436. P. 51-60. https://doi.org/10.1016/j.apcata.2012.05.039
- AL Othman Z. A review: Fundamental aspects of silicate mesoporous materials // Materials. 2012. V. 5. № 12. P. 2874-2902. https://doi.org/10.3390/ma5122874
- Khalil K.M.S. Cerium modified MCM-41 nanocomposite materials via a nonhydrothermal direct method at room temperature // Journal of Colloid and Interface Science. 2007. V. 315. № 2. P. 562-568. https://doi.org/10.1016/j.jcis.2007.07.030
- Yoon J.S., Lee T., Choi J.-W., Suh D.J., Lee K., Ha J.-M., Choi J. Layered MWW zeolite-supported Rh catalysts for the hydrodeoxygenation of lignin model compounds // Catalysis Today. 2017. V. 293-294. P. 142-150. https://doi.org/10.1016/j.cattod.2016.10.033
- Newman C., Zhou X., Goundie B., Ghampson I.T., Pollock R.A., Ross Z., Wheeler M.C., Meulenberg R.W., Austin R.N., Frederick B.G. Effects of support identity and metal dispersion in supported ruthenium hydrodeoxygenation catalysts // Applied Catalysis A: General. 2014. V. 477. P. 64-74. https://doi.org/10.1016/j.apcata.2014.02.030
- Ziolek M., Nowak I., Lavalley J.C. Acidity study of Nb-containing MCM-41 mesoporous materials. Comparison with that of Al-MCM-41 // Catalysis Letters. 1997. V. 45. № 3/4. P. 259-265. https://doi.org/10.1023/A:1019000619962
- Kosslick H., Lischke G., Parlitz B., Storek W., Fricke R. Acidity and active sites of Al-MCM-41 // Applied Catalysis A: General. 1999. V. 184. № 1. P. 49-60. https://doi.org/10.1016/S0926-860X(99)00078-2
- Feng L., Li X., Wang Z., Liu B. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst // Bioresource Technology. 2021. V. 323. P. 124569. https://doi.org/10.1016/j.biortech.2020.124569
- Molina-Conde L.H., Suárez-Méndez A., PérezEstrada D.E., Klimova T.E. Mesoporous Ni/Al-MCM-41 catalysts for highly active and selective hydrodeoxygenation of anisole to cyclohexane // Applied Catalysis A: General. 2023. V. 663. P. 119313. https://doi.org/10.1016/j.apcata.2023.119313
- Taghvaei H., Moaddeli A., Khalafi-Nezhad A., Iulianelli A. Catalytic hydrodeoxygenation of lignin pyrolytic-oil over Ni catalysts supported on spherical Al-MCM-41 nanoparticles: Effect of Si/Al ratio and Ni loading // Fuel. 2021. V. 293. P. 120493. https://doi.org/10.1016/j.fuel.2021.120493
- Sirous-Rezaei P., Jae J., Ha J.-M., Ko C.H., Kim J.M., Jeon J.-K., Park Y.-K. Mild hydrodeoxygenation of phenolic lignin model compounds over a FeReOx/ZrO2 catalyst: Zirconia and rhenium oxide as efficient dehydration promoters // Green Chemistry. 2018. V. 20. № 7. P. 1472-1483. https://doi.org/10.1039/C7GC03823B
- Szczyglewska P., Feliczak-Guzik A., Nowak I. A support effect on the hydrodeoxygenation reaction of anisole by ruthenium catalysts // Microporous and Mesoporous Materials. 2020. V. 293. P. 109771. https://doi.org/10.1016/j.micromeso.2019.109771
- Bejblová M., Zámostný P., Červený L., Čejka J. Hydrodeoxygenation of benzophenone on Pd catalysts // Applied Catalysis A: General. 2005. V. 296. № 2. P. 169-175. https://doi.org/10.1016/j.apcata.2005.07.061
- Yang X., Zhang S., Qiu Z., Tian G., Feng Y., Xiao F.-S. Stable ordered mesoporous silica materials templated by high-temperature stable surfactant micelle in alkaline media // J. of Physical Chemistry B. 2004. V. 108. № 15. P. 4696-4700. https://doi.org/10.1021/jp0380226
- Glotov A., Vutolkina A., Pimerzin A., Nedolivko V., Zasypalov G., Stytsenko V., Karakhanov E., Vinokurov V. Ruthenium catalysts templated on mesoporous MCM-41 type silica and natural clay nanotubes for hydrogenation of benzene to cyclohexane // Catalysts. 2020. V. 10. № 5. P. 537. https://doi.org/10.3390/catal10050537
- Lvov Y., Wang W., Zhang L., Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds // Advanced Materials. 2016. V. 28. № 6. P. 1227-1250. https://doi.org/10.1002/adma.201502341
- Glotov A., Vutolkina A., Pimerzin A., Vinokurov V., Lvov Y. Clay nanotube-metal core/shell catalysts for hydroprocesses // Chemical Society Reviews. 2021. V. 50. № 16. P. 9240-9277. https://doi.org/10.1039/D1CS00502B
- Stavitskaya A., Rubtsova M., Glotov A., Vinokurov V., Vutolkina A., Fakhrullin R., Lvov Y. Architectural design of core-shell nanotube systems based on aluminosilicate clay // Nanoscale Advances. 2022. V. 4. № 13. P. 2823-2835. https://doi.org/10.1039/D2NA00163B
- Vutolkina A. V., Zasypalov G.O., Aljajan Ya., Klimovsky V.A., Vinokurov V.A., Rubtsova M.I., Pimerzin Al.A., Glotov A.P. Gram-scale ruthenium catalysts templated on halloysite nanotubes and MCM-41/halloysite composite for removal of aromatics from gasoline fraction // New J. of Chemistry. 2023. V. 47. № 25. P. 12015-12026. https://doi.org/10.1039/D3NJ01709E
- Demikhova N.R., Rubtsova M.I., Kireev G.A., Cherednichenko K.A., Vinokurov V.A., Glotov A.P. Micro-mesoporous catalysts based on ZSM-5 zeolite synthesized from natural clay nanotubes: Preparation and application in the isomerization of C-8 aromatic fraction // Chemical Engineering J. 2023. V. 453. P. 139581. https://doi.org/10.1016/j.cej.2022.139581
- Singh B., Mackinnon I.D.R. Experimental transformation of kaolinite to halloysite // Clays Clay Miner. 1996. V. 44. P. 825-834. https://doi.org/10.1346/CCMN.1996.0440614
- Глотов А.П., Ролдугина Е.А., Артемова М.И., Смирнова Е.М., Демихова Н.Р., Стыценко В.Д., Егазарьянц С.В., Максимов А.Л. Изомеризация ксилолов в присутствии Pt-содержащих катализаторов на основе алюмосиликатных нанотрубок галлуазита // Журнал прикладной химии. 2018. Т. 91. № 8. С. 1173-1183. https://doi.org/10.1134/S0044461818080108
- Glotov A.P., Roldugina E.A., Artemova M.I., Smirnova E.M., Demikhova N.R., Stytsenko V.D., Egazar'yants S. V., Maksimov A.L., Vinokurov V.A. Isomerization of xylenes in the presence of Pt-containing catalysts based on halloysite aluminosilicate nanotubes // Russian Journal of Applied Chemistry. 2018. V. 91. № 8. P. 1353-1362. https://doi.org/10.1134/S1070427218080141.
- Stehl D., Milojević N., Stock S., Schomäcker R., von Klitzing R. Synergistic Effects of a rhodium catalyst on particle-stabilized pickering emulsions for the hydroformylation of a long-chain olefin // Industrial & Engineering Chemistry Research. 2019. V. 58. № 7. P. 2524-2536. https://doi.org/10.1021/acs.iecr.8b04619
- Stavitskaya A., Mazurova K., Kotelev M., Eliseev O., Gushchin P., Glotov A., Kazantsev R., Vinokurov V., Lvov Y. Ruthenium-loaded halloysite nanotubes as mesocatalysts for Fischer-Tropsch synthesis // Molecules. 2020. V. 25. № 8. P. 1764. https://doi.org/10.3390/molecules25081764
- Akopyan A., Polikarpova P., Vutolkina A., Cherednichenko K., Stytsenko V., Glotov A. Natural clay nanotube supported Mo and W catalysts for exhaustive oxidative desulfurization of model fuels // Pure and Applied Chemistry. 2021. V. 93. № 2. P. 231-241. https://doi.org/10.1515/pac-2020-0901
- Glotov A.P., Vutolkina A.V., Vinogradov N.A., Pimerzin A.A., Vinokurov V.A., Pimerzin Al.A. Enhanced HDS and HYD activity of sulfide Co-PMo catalyst supported on alumina and structured mesoporous silica composite // Catalysis Today. 2021. V. 377. P. 82-91. https://doi.org/10.1016/j.cattod.2020.10.010
- Zasypalov G., Vutolkina A., Klimovsky V., Abramov E., Vinokurov V., Glotov A. Hydrodeoxygenation of guaiacol over halloysite nanotubes decorated with Ru nanoparticles: Effect of alumina acid etching on catalytic behavior and reaction pathways // Applied Catalysis B: Environmental. 2023. V. 342. P. 123425. https://doi.org/10.1016/j.apcatb.2023.123425
- Serrano-Maldonado A., Bendounan A., Silly M.G., Pla D., Gómez M. Selective catalytic hydrogenation of fatty acids with cobalt-halloysite nanocomposites for waste valorization // ACS Applied Nano Materials. 2023. V. 6. № 13. P. 11317-11326. https://doi.org/10.1021/acsanm.3c01361
- Zhang Z., Song J., Han B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids // Chemical Reviews. 2017. V. 117. № 10. P. 6834-6880. https://doi.org/10.1021/acs.chemrev.6b00457
- Vinokurov V., Glotov A., Chudakov Y., Stavitskaya A., Ivanov E., Gushchin P., Zolotukhina A., Maximov A., Karakhanov E., Lvov Y. Core/shell ruthenium-halloysite nanocatalysts for hydrogenation of phenol // Industrial & Engineering Chemistry Research. 2017. V. 56. № 47. P. 14043-14052. https://doi.org/10.1021/acs.iecr.7b03282
- Недоливко В.В., Засыпалов Г.О., Чудаков Я.А., Вутолкина А.В. Пимерзин Ал.А., Глотов А.П. Влияние способа нанесения рутения на активность наноструктурированных катализаторов глубокого гидрирования бензола // Известия Академии наук. Серия химическая. 2020. № 2. С. 260-264
- Nedolivko V.V., Zasypalov G.O., Chudakov Ya.A., Vutolkina A.V., Pimerzin Al.A., Glotov A.P. Effect of the ruthenium deposition method on the nanostructured catalyst activity in the deep hydrogenation of benzene // Russian Chemical Bulletin. 2020. V. 69. № 2. P. 260-264. https://doi.org/10.1007/s11172-020-2754-2.
- Недоливко В.В., Засыпалов Г.О., Боев С.С., Чередниченко К.А., Винокуров В.А., Глотов А.П. Исследование рутений-содержащих катализаторов на основе алюмосиликатных нанотрубок галлуазита различного происхождения в гидрировании бензола // Наногетерогенный катализ. 2021. Т. 6. № 1. С. 53-60. https://doi.org/10.56304/S2414215821020052
- Nedolivko V.V., Zasypalov G.O., Boev S.S., Cherednichenko K.A., Vinokurov V.A., Glotov A.P. Ruthenium-containing catalysts based on halloysite aluminosilicate nanotubes of different origin in benzene hydrogenation // Petrol. Chemistry. 2021. V. 61. № 10. P. 1104-1110. https://doi.org/10.1134/S0965544121100017.
- Vutolkina A., Glotov A., Baygildin I., Akopyan A., Talanova M., Terenina M., Maximov A., Karakhanov E. Ni-Mo sulfide nanosized catalysts from water-soluble precursors for hydrogenation of aromatics under water gas shift conditions // Pure and Applied Chemistry. 2020. V. 92. № 6. P. 949-966. https://doi.org/10.1515/pac-2019-1115
- Glotov A., Novikov A., Stavitskaya A., Nedolivko V., Kopitsyn D., Kuchierskaya A., Ivanov E., Stytsenko V., Vinokurov V., Lvov Y. Nanoreactors based on hydrophobized tubular aluminosilicates decorated with ruthenium: Highly active and stable catalysts for aromatics hydrogenation // Catalysis Today. 2021. V. 378. P. 33-42. https://doi.org/10.1016/j.cattod.2020.10.001
- Fu L., Yang H., Tang A., Hu Y. Engineering a tubular mesoporous silica nanocontainer with well-preserved clay shell from natural halloysite // Nano Research. 2017. V. 10. № 8. P. 2782-2799. https://doi.org/10.1007/s12274-017-1482-x
- Mäki-Arvela P., Murzin D. Hydrodeoxygenation of lignin-derived phenols: From fundamental studies towards industrial applications // Catalysts. 2017. V. 7. № 9. P. 265. https://doi.org/10.3390/catal7090265
Supplementary files
