Dehydrogenation of Cumene to α-Methylstyrene over Tungsten-Containing Porous Ceramic Converters
- Authors: Fedotov A.S.1, Grachev D.Y.1, Kapustin R.D.2, Alymov M.I.2, Tsodikov M.V.1
-
Affiliations:
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- A.G. Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
- Issue: Vol 63, No 5 (2023)
- Pages: 735-744
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655590
- DOI: https://doi.org/10.31857/S0028242123050118
- EDN: https://elibrary.ru/SBGSKM
- ID: 655590
Cite item
Abstract
It was shown that the method for the incorporation of a catalytic tungsten component into a porous ceramic converter has a major effect on the activity and selectivity of cumene-to-AMS dehydrogenation. Specifically, the activity of a surface-modified tungsten-containing converter exceeded by more than 2.5 orders of magnitude the activity of a converter with tungsten incorporated by thermochemical sintering of the initial blend. It was further found that the performance of hydrocarbon dehydrogenation in converter channels nearly doubles that of the process occurring over a granular catalyst with an equivalent composition. It was also demonstrated that the process performance can be enhanced by removing extra-pure hydrogen from the reaction system through a palladium-containing membrane. Cumene dehydrogenation in catalytic converters was identified as a zero-order reaction.
About the authors
A. S. Fedotov
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: alexey.fedotov@ips.ac.ru
119991, Moscow, Russia
D. Yu. Grachev
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
R. D. Kapustin
A.G. Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: petrochem@ips.ac.ru
Chernogolovka, 142432, Moscow Region, Russia
M. I. Alymov
A.G. Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences
Email: petrochem@ips.ac.ru
Chernogolovka, 142432, Moscow Region, Russia
M. V. Tsodikov
A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
References
- Zuo C., Su Q. Research Progress on propylene preparation by propane dehydrogenation // Molecules. 2023. V. 28. № 8. P. 3594. https://doi.org/10.3390/molecules28083594
- Nawaz Z. Light alkane dehydrogenation to light olefin technologies: a comprehensive review // Reviews in Chemical Engineering. 2015. V. 31. № 5. P. 413-436. https://doi.org/10.1515/revce-2015-0012
- Sanfilippo D. Dehydrogenation of paraffins; key technology for petrochemicals and fuels // Cattech. 2000. V. 4. P. 56-73. https://doi.org/10.1023/A:1011947328263
- Bricker J.C. Advanced catalytic dehydrogenation technologies for production of olefins // Topics in Catalysis. 2012. V. 55. № 19-20. P. 1309-1314. https://doi.org/10.1007/s11244-012-9912-1
- Vora B.V. Development of dehydrogenation catalysts and processes // Topics in Catalysis. 2012. V. 55. № 19-20. P. 1297-1308. https://doi.org/10.1007/s11244-012-9917-9
- Julbe A., Farrusseng D., Guizard C. Porous ceramic membranes for catalytic reactors - overview and new ideas // Journal of Membrane Science. 2001. V. 181. № 1. P. 3-20. https://doi.org/10.1016/S0376-7388(00)00375-6
- Nettleship I. Applications of porous ceramics // Key Engineering Materials. 1996. V. 122. P. 305-324. https://doi.org/10.4028/www.scientific.net/KEM.122-124.305
- Ohji T., Fukushima M. Macro-porous ceramics: processing and properties // Intern. Materials Reviews. 2012. V. 57. № 2. P. 115-131. https://doi.org/10.1179/1743280411Y.0000000006
- Borovinskaya I.P., Manukyan K., Mukasyan A.S. SHS ceramics: history and recent advances // Ceramics in Modern Technologies. 2019. V. 1. № 1. P. 1-49. https://doi.org/10.29272/cmt.2018.0012
- Kurian M., Thankachan S., Nair S.S. (ed.). Ceramic Catalysts: Materials, Synthesis, and Applications. Elsevier, 2023. 350 р.
- Hong-kai Zha, Wen-qing Yu, Jing-wei Li, Jian Shi, Jun-cheng Li, Wen-ming Tang, Yin-he Lin, Kui-song Zhu, Ji-gui Cheng, Gui-cheng Liu. Progress in preparation and properties of porous silicon nitride ceramics // Silicon. 2023. P. 1-23. https://doi.org/10.1007/s12633-023-02525-0
- Rzig R., Troudi F., Ben Khedher N., Boukholda I., Aziz Alshammari F., Khalaf Alshammari N. Enhancement of 3D mass and heat transfer within a porous ceramic exchanger by flow-induced vibration // ACS Omega. 2022. V. 7. № 15. P. 13280-13289. https://doi.org/10.1021/acsomega.2c00907
- Lauriat G., Ghafir R. Forced convective heat transfer in porous media // Vafai K. (eds) Handbook of Porous Media. Dekker, New York, 2000. P. 201-267.
- Sun T., Huang X., Qu Y., Wang F., Chen Y. Theoretical and experimental study on heat and mass transfer of a porous ceramic tube type indirect evaporative cooler //Appl. Thermal Engineering. 2020. V. 173. P. 115211. https://doi.org/10.1016/j.applthermaleng.2020.115211
- Shelepova E.V., Vedyagin, A.A., Mishakov I.V., Noskov A.S. Modeling of ethylbenzene dehydrogenation in catalytic membrane reactor with porous membrane // Catalysis for Sustainable Energy. 2014. V. 2. № 1. P. 1-9. https://doi.org/10.2478/cse-2014-0001
- Gobina E., Hou K., Hughes R. Ethane dehydrogenation in a catalytic membrane reactor coupled with a reactive sweep gas // Chemical Engineering Science. 1995. V. 50. № 14. P. 2311-2319. https://doi.org/10.1016/0009-2509(95)00059-E
- Basov N.L., Ermilova M.M., Orekhova N.V., Yaroslavtsev A.B. Membrane catalysis in the dehydrogenation and hydrogen production processes // Russian Chemical Reviews. 2013. V. 82. № 4. P. 352.
- Abdalla B.K., Elnashaie S.S.E.H. A membrane reactor for the production of sytrene from ethylbenzene // J. of Membrane Science. 1993. V. 85. № 3. P. 229-239. https://doi.org/10.1016/0376-7388(93)85277-4
- Fedotov A.S., Tsodikov M.V., Yaroslavtsev A.B. Hydrogen production in catalytic membrane reactors based on porous ceramic converters // Processes. 2022. V. 10. № 10. P. 2060. https://doi.org/10.3390/pr10102060
- Fedotov A.S., Uvarov V.I., Tsodikov M.V., Paul S., Simon P., Marinova M., Dumeignil F. Production of styrene by dehydrogenation of ethylbenzene on a [Re, W]/γ-Al2O3 (K, Ce)/α-Al2O3 porous ceramic catalytic converter // Chem. Engineering and Processing-Process Intensification. 2021. V. 160. P. 108265. https://doi.org/10.1016/j.cep.2020.108265
- Федотов А.С., Грачев Д.Ю., Багдатов Р.А., Цодиков М.В., Уваров В.И., Капустин Р.Д., Поль С., Дюменьиль Ф. Особенности протекания процесса дегидрирования этилбензола в стирол на пористых керамических конвертерах, содержащих рений и вольфрам // Нефтехимия. 2023. Т. 63. № 2. С. 250-261.
- Fedotov A.S., Grachev D.Yu., Bagdatov R.A., Tsodikov M.V., Uvarov V.I., Kapustin R.D., Paul S., Dumeignil F. Dehydrogenation of ethylbenzene to styrene over rhenium- and tungsten-containing porous ceramic converters // Petrol. Chemistry. 2023. V. 63. P. 453-462. https://doi.org/10.1134/S0965544123030143.
- Чистяков А.В., Жарова П.А., Цодиков М.В., Николаев С.А., Кротова И.Н., Эзжеленко Д.И. Превращение этанола в линейные первичные спирты на золото-, никель- и золото-никелевых катализаторах // Кинетика и катализ. 2016. Т. 57. № 6. P. 807-816. https://doi.org/10.7868/S0453881116060058
- Chistyakov A.V., Zharova P.A., Tsodikov M.V., Nikolaev S.A., Krotova I.N., Ezzhelenko D.I. Conversion of ethanol into linear primary alcohols on gold, nickel, and gold-nickel catalysts // Kinet. Catal. 2016. V. 57. P. 803-811. https://doi.org/10.1134/S0023158416060045
- Ряшенцева М.А., Минчаев Х.М. Рений и его соединения в гетерогенном катализе. М.: Наука, 1983. 248 с.
- Ряшенцева М.А. Ренийсодержащие катализаторы в реакциях органических соединений // Успехи химии. 1998. Т. 67. № 2. C. 175-196.
- Ряшенцева М.А. Ренийсодержащие катализаторы в нефтехимии и органических реакциях // Вестник МИТХТ. 2007. Т. 2. № 2. C. 12.
- Lai C., Wang J., Zhou F., Liu W., Miao N. Reduction, sintering and mechanical properties of rhenium-tungsten compounds // J. of Alloys and Compounds. 2018. V. 735. P. 2685-2693. https://doi.org/10.1016/j.jallcom.2017.11.064
- Romanyuk A., Steiner R., Oelhafen P., Biskupek J., Kaiser U., Mathys D., Spassov V. Thermal stability of tungsten oxide clusters // J. of Physic. Chemistry. 2008. V. 112. № 30. P. 11090-11092. https://doi.org/10.1021/jp803844d
- Wilken T.R., Morcom W.R., Wert C.A. Reduction of tungsten oxide to tungsten metal // Metallurgical Transactions. 1976. V. 7. № 4. P. 589-597. https://doi.org/10.1007/BF02698592
Supplementary files
