CoPMoV Sulfide Catalysts Supported on Natural Halloysite Nanotubes in Hydrotreating of Dibenzothiophene and Naphthalene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mixed sulfided CoMo catalysts supported on γ-Al2O3 and halloysite nanotubes (HNTs) were synthesized by incipient wetness impregnation with salt solutions of Keggin-type phosphorus- and vanadium-containing heteropolyacids. The synthesized materials were characterized by low-temperature nitrogen adsorption, energy dispersive X-ray fluorescence analysis, temperature-programmed reduction (both for the oxide and sulfide catalysts), and Raman spectroscopy, and were tested in hydrogenation of naphthalene and hydrodesulfurization of dibenzothiophene. The HNT-supported catalyst exhibited a greater activity in these reactions.

About the authors

N. A. Vinogradov

Samara State Technical University; Gubkin Russian State University of Oil and Gas (National Research University)

Email: nikkodym@gmail.com
443100, Samara, Russia; 119991, Moscow, Russia

V. V. Timoshkina

Samara State Technical University

Email: petrochem@ips.ac.ru
443100, Samara, Russia

E. A. Tsilimbaeva

Samara State Technical University

Email: petrochem@ips.ac.ru
443100, Samara, Russia

G. O. Zasypalov

Gubkin Russian State University of Oil and Gas (National Research University)

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. A. Pimerzin

Gubkin Russian State University of Oil and Gas (National Research University); Gazpromneft Industrial Innovations LLC

Email: petrochem@ips.ac.ru
119991, Moscow, Russia; 197350, St. Petersburg, Russia

A. P. Glotov

Gubkin Russian State University of Oil and Gas (National Research University)

Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia

References

  1. de León J.N.D., Kumar C.R., Antúnez-García J., Fuentes-Moyado S. Recent insights in transition metal sulfide hydrodesulfurization catalysts for the production of ultra low sulfur diesel: A short review // Catalysts. 2019. V. 9. № 1. P. 1-26. https://doi.org/10.3390/catal9010087.
  2. Weng X., Cao L., Zhang G., Chen F., Zhao L., Zhang Y., Gao J., Xu C. Ultradeep hydrodesulfurization of diesel: mechanisms, catalyst design strategies, and challenges // Ind. Eng. Chem. Res. 2020. V. 59. № 49. P. 21261-21274. https://doi.org/10.1021/acs.iecr.0c04049.
  3. Garcia E.D., Chen J., Oliviero E., Oliviero L., Maugé F. New insight into the support effect on HDS catalysts: evidence for the role of Mo-support interaction on the MoS2 slab morphology // Appl. Catal. B: Environmental. 2020. V. 260. P. 1-13. https://doi.org/10.1016/j.apcatb.2019.117975
  4. North J., Poole O., Alotaibi A., Bayahia H., Kozhevnikova E.F., Alsalme A., Siddiqui M.R.H., Kozhevnikov I. V. Efficient hydrodesulfurization catalysts based on Keggin polyoxometalates // Appl. Catal. A: General. 2015. V. 508. P. 16-24. https://doi.org/10.1016/j.apcata.2015.10.001.
  5. Tanimu A., Alhooshani K. Advanced hydrodesulfurization catalysts: A review of design and synthesis: review-article // Energy and Fuels. Am. Chem. Soc. 2019. V. 33. № 4. P.2810-2838. https://doi.org/10.1021/acs.energyfuels.9b00354.
  6. Lizama L., Klimova T. Highly active deep HDS catalysts prepared using Mo and W heteropolyacids supported on SBA-15 // Appl. Catal. B: Environmental. 2008. V. 82. № 3-4. P. 139-150. https://doi.org/10.1016/j.apcatb.2008.01.018.doi: 10.1016/j.apcatb.2008.01.018
  7. Oliviero L., Maugé F., Afanasiev P., Pedraza-Parra C., Geantet C. Organic additives for hydrotreating catalysts: A review of main families and action mechanisms // Catalysis Today. 2021. V. 377. P. 3-16. https://doi.org/doi.org/10.1016/j.cattod.2020.09.008
  8. Berhault G. Metal sulfides: novel synthesis methods and recent developments // New materials for catalytic applications. Elsevier B.V. 2016. P. 313-360. https://doi.org/10.1016/B978-0-444-63587-7.00010-X
  9. Nikulshina M., Kokliukhin A., Mozhaev A., Nikulshin P. CoMo/Al2O3 hydrotreating catalysts prepared from single Co2Mo10-heteropolyacid at extremely high metal loading // Catal. Commun. 2019. V. 127. P. 51-57. https://doi.org/10.1016/j.catcom.2019.05.003
  10. Park D.R., Kim H., Jung J.C., Lee S.H., Song I.K. Reduction potentials of H3+xPMo12-xVxO40 and H6+xP2Mo18-xVxO62 heteropolyacid (HPA) catalysts and their catalytic activity for the vapor-phase oxidative dehydrogenation of isobutyric acid // Catal. Commun. 2008. V. 9. № 2. P. 293-298. https://doi.org/10.1016/j.catcom.2007.06.025
  11. Soogund D., Lecour P., Daudin A., Guichard B., Legens C., Lamonier C., Payen E. New Mo-V based oxidic precursor for the hydrotreatment of residues // Appl. Catal. B: Environmental. 2010. V. 98 № 1-2. P. 39-48. doi: 10.1016/j.apcatb.2010.04.024.
  12. Betancourt P., Marrero S., Pinto-Castilla S. VNiMo sulfide supported on Al2O3: preparation, characterization and LCO hydrotreating // Fuel Process. Technol. 2013. Vol. 114. P. 21-25. https://doi.org/10.1016/j.fuproc.2013.03. [1]013.
  13. Sadovniko A.A., Arapova O.V., Russo V., Maximov A.L., Murzin D.Y., Naranov E.R. Synergy of acidity and morphology of micro-/mesoporous materials in the solid-acid alkylation of toluene with 1-decene // Industrial & Engineering Chemistry Research. 2022. Vol. 61. № 5. P. 1994-2009. https://doi.org/10.1021/acs.iecr.1c0416914
  14. Наранов Е.Р., Дементьев К.И., Герзелиев И.М., Колесниченко Н.В., Ролдугина Е.А., Максимов А.Л. Роль цеолитного катализа в современной нефтепереработке: вклад отечественных разработок // Современные молекулярные сита. 2019. Т. 2. № 2. С. 1-14
  15. Naranov E.R., Dement'Ev K.I., Gerzeliev I.M., Kolesnichenko N.V., Roldugina E.A., Maksimov A.L. The role of zeolite catalysis in modern petroleum refining: contribution from domestic technologies // Petrol. Chemistry. 2019. V. 59. P. 247-261. https://doi.org/10.1134/S0965544119030101.
  16. Odyakov V.F., Zhizhina E.G., Rodikova Y.A., Gogin L.L. Mo-V-Phosphoric heteropoly acids and their salts: aqueous solution preparation - challenges and perspectives // Eur. J. Inorg. Chem. 2015. V. 2015. № 22. P. 3618-3631. https://doi.org/10.1002/ejic.201500359
  17. Шавалеев Д.А., Павлов М.Л., Басимова Р.А., Садовников А.А., Судьин В.В., Смирнова Е.М., Демихова Н.Р., Григорьев Ю.В., Максимов А.Л., Наранов Е.Р. Синтез модифицированного катализатора для процесса жидкофазного алкилирования бензола этиленом // Нефтехимия. 2020. Т. 60. № 5. С. 686-692 https://doi.org/10.31857/S0028242120050184
  18. Shavaleev D.A., Pavlov M.L., Basimova R.A., Sadovnikov A.A., Sudin V.V., Smirnova E.M., Demikhova N.R., Grigor'ev Yu.V., Maksimov A.L., Naranov E.R. Synthesis of modified catalyst for liquid phase alkylation of benzene with ethylene // Petrol. Chemistry. 2020. V. 60. P. 1073-1079. https://doi.org/10.1134/S0965544120090182.
  19. Наранов Е.Р., Голубев О.В., Гусева А.И., Никульшин П.А., Егазарьянц С.В., Максимов А.Л., Караханов Э.А. Гидроочистка среднедистиллятной фракции на сульфидных катализаторах, содержащих кристаллические пористые алюмосиликаты // Нефтехимия. 2020. Т. 57. № 6. С. 773-777. https://doi.org/10.7868/S0028242117060296
  20. Naranov E.R., Golubev O.V., Guseva A.I., Nikulshin P.A., Maksimov A.L., Karakhanov E.A. Hydrotreating of middle-distillate fraction on sulfide catalysts containing crystalline porous aluminosilicates // Petrol. Chemistry. 2017. V. 57. P. 1151-1155. https://doi.org/10.1134/S0965544117060226.
  21. Glotov A.P., Vutolkina A.V., Vinogradov N.A., Pimerzin A.A., Vinokurov V.A., Pimerzin A.A. Enhanced HDS and HYD activity of sulfide Co-PMo catalyst supported on alumina and structured mesoporous silica composite // Catalysis Today. 2021. V. 377. Р. 82-91. https://doi.org/10.1016/j.cattod.2020.10.010
  22. Glotov A., Leshakov N., Stavitskaya A., Artemova M., Gushchin P., Ivanov V., Vinokurov V., Lvov Y. Templated self-assembly of ordered mesoporous silica on clay nanotubes // Chem. Commun. 2019. V. 55. № 38. P. 5507-5510. https://doi.org/10.1039/C9CC01935A
  23. Stavitskaya A., Rubtsova M., Glotov A., Vinokurov V., Vutolkina A., Fakhrullin R., Lvov Y. Architectural design of core-shell nanotube systems based on aluminosilicate clay // Nanoscale Advances. 2022. V. 4. № 13. P. 2823-2835. https://doi.org/10.1039/D2NA00163B
  24. Pimerzin Al. A., Vutolkina A.V., Vinogradov N.A, Vinokurov V.A., Lvov Yu.M., Glotov A.P. Core-shell catalysts with CoMoS phase embedded in clay nanotubes for dibenzothiophene hydrodesulfurization // Catalysis Today. 2022. V. 397. P. 121-128. https://doi.org/10.1016/j.cattod.2021.11.019
  25. Тимошкина В.В., Юдинцев С.В., Френкель Е.Д., Пимерзин Ал.А. Ванадийсодержащие гетерополикислоты структуры Кеггина как прекурсоры сульфидных катализаторов. Закономерности превращения дибензотиофена и нафталина на непромотированных Mo-V-катализаторах // Нефтехимия. 2022. Т. 62. № 5. С. 691-700. https://doi.org/10.31857/S0028242122050082
  26. Timoshkina V.V., Yudintsev S.V., Frenkel E.D., Pimerzin A.A. V-Containing heteropoly acids with keggin structure as precursors of sulfide catalysts: regularities of the convertion of dibenzothiophene and naphthalene on nonpromoted Mo-V catalysts // Petrol. Chemistry. 2022. V. 62. № 7. P. 779-787. https://doi.org/10.1134/S0965544122050085.
  27. Тимошкина В.В., Виноградов Н.А., Пимерзин А.А., Вутолкина А.В., Глотов А.П. V-содержащие гетерополикислоты структуры Кеггина как прекурсоры сульфидных CoPMoV-катализаторов гидропревращения дибензотиофена и нафталина // Наногетерогенный катализ. 2022. Т. 7. № 1. С. 1-7. https://doi.org/10.56304/S2414215822010129
  28. Timoshkina V.V., Vinogradov N.A., Pimerzin A.A., Vutolkina A.V., Glotov A.P. Vanadium-containing heteropoly acids of keggin structure as precursors of copmov sulfide catalysts for hydroconversion of dibenzothiophene and naphthalene // Petrol. Chemistry. 2022. V. 62. № 11. P. 1343-1349. https://doi.org/10.1134/s0965544122110044.
  29. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure and applied chemistry. 2015. V. 87. № 9-10. P. 1051-1069. https://doi.org/10.1515/pac-2014-1117i
  30. Fang B., Qi Z., Liu F., Zhang C., Li C., Ni J., Lin B, Jiang L. Activity enhancement of ceria-supported Co-Mo bimetallic catalysts by tuning reducibility and metal enrichment // J. of Catalysis. 2022. V. 406. P. 231-240. https://doi.org/10.1016/j.jcat.2022.01.015
  31. Van Veen J.A.R., Hendriks P.A.J.M., Andrea R.R., Romers E.J.G.M., Wilson A.E. Chemistry of phosphomolybdate adsorption on alumina surfaces. 2. The molybdate/phosphated alumina and phosphomolybdate/alumina systems // J. of Physic. Chemistry. 1990. V. 94. № 13. P. 5282-5285. https://doi.org/10.1021/j100376a022
  32. Bajuk-Bogdanović D., Uskoković-Marković S., Hercigonja R., Popa A., Holclajtner-Antunović I. Study of the decomposition pathway of 12-molybdophosphoric acid in aqueous solutions by micro Raman spectroscopy // Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy. 2016. V. 153. P. 152-159. https://doi.org/10.1016/j.saa.2015.08.029
  33. Scheffer B., Dekker N.J.J., Mangnus P.J., Moulijn J.A. A temperature-programmed reduction study of sulfided CoMo/Al2O3 hydrodesulfurization catalysts // J. of Catalysis. 1990. V. 121. № 1. P. 31-46. https://doi.org/10.1016/0021-9517(90)90214-5
  34. Wang B., Chen Z., Jiang T., Yu J., Yang H., Duan A., Xu C. Comparison of the intraparticle diffusion of DBT and 4,6-DMDBT in HDS over different mesostructured silica-based catalysts // Fuel. 2022. V. 324. P. 32-48. https://doi.org/10.1016/j.fuel.2022.124516

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences