tert-Butyl Ethers of Renewable Diols as Oxygenate Additives to Automobile Gasolines. Part II: Ethers of Ethylene Glycol and 2,3-Butanediol
- Authors: Samoylov V.O.1, Stolonogova T.I.2, Ramazanov D.N.1, Tyurina E.V.2, Sultanova M.U.1, Lavrent'ev V.A.1, Krasnoshtanova S.S.2, Chernysheva E.A.2, Kapustin V.M.2
-
Affiliations:
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Gubkin Russian State University of Oil and Gas
- Issue: Vol 63, No 4 (2023)
- Pages: 545-555
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655601
- DOI: https://doi.org/10.31857/S0028242123040093
- EDN: https://elibrary.ru/OHWBLK
- ID: 655601
Cite item
Abstract
The results obtained in the second part of the study of vicinal (tert-butoxy)alkanols as additives to automobile gasolines are presented. Mono-tert-butyl ethers of ethylene glycol (ETBE) and 2,3-butanediol (BTBE) were prepared by direct acid-catalyzed alkylation of the corresponding diols with tert-butanol. The substances obtained were characterized by main physical properties (density, viscosity, boiling point, crystallization point, specific heat of combustion) and were studied as additives to automobile gasolines. The effect of ether additives on the main physicochemical properties of gasolines (fractional composition, saturated vapor pressure, concentration of actual resins, knock resistance), including ethanol-containing gasolines, was studied. The mean research/motor blending octane numbers for ETBE and BTBE were 130/103 and 115/97, respectively. Inclusion of ETBE/BTBE into the formulations of ethanol-containing gasolines allowed the cloud point to be considerably reduced without unambiguous synergistic effect on the knock resistance.
Keywords
About the authors
V. O. Samoylov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
T. I. Stolonogova
Gubkin Russian State University of Oil and Gas
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
D. N. Ramazanov
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
E. V. Tyurina
Gubkin Russian State University of Oil and Gas
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
M. U. Sultanova
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
V. A. Lavrent'ev
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: lavrentev@ips.ac.ru
119991, Moscow, Russia
S. S. Krasnoshtanova
Gubkin Russian State University of Oil and Gas
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
E. A. Chernysheva
Gubkin Russian State University of Oil and Gas
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
V. M. Kapustin
Gubkin Russian State University of Oil and Gas
Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
References
- Самойлов В.О., Столоногова Т.И., Рамазанов Д.Н., Тюрина Е.В., Лаврентьев В.А., Порукова Ю.И., Чернышева Е.А., Капустин В.М. трет-Бутиловые эфиры возобновляемых диолов как оксигенатные добавки к автомобильным бензинам. Часть I: эфиры глицерина и пропиленгликоля // Нефтехимия. 2023. Т. 63. № 2. С. 220-230. https://doi.org/10.31857/S0028242123020065
- Samoilov V.O., Stolonogova T.I., Ramazanov D.N., Tyurina E. V, Lavrent'ev V.A., Porukova Y.I., Chernysheva E.A., Kapustin V.M. tert-Butyl ethers of renewable diols as oxygenated additives for motor gasoline. Part I: Glycerol and propylene glycol ethers // Petrol. Chemistry. 2023. V. 63. № 4. P. 428-436. https://doi.org/10.1134/S0965544123010061.
- Soares B.P., Abranches D.O., Sintra T.E., Leal-Duaso A., García J.I., Pires E., Shimizu S., Pinho S.P., Coutinho A.P. Glycerol ethers as hydrotropes and their use to enhance the solubility of phenolic acids in water // ACS Sustain Chem. Eng. 2020. V. 8. N 14. P. 5742-5749. https://doi.org/10.1021/acssuschemeng.0c01032
- Moity L., Shi Y., Molinier V., Dayoub W., Lemaire M., Aubry J.M. Hydrotropic properties of alkyl and aryl glycerol monoethers // J. Phys. Chem. B. 2013. V. 117. N 31. P. 9262-9272. https://doi.org/10.1021/jp403347u.
- Nadirov, N.K. and Slutskin, R.L. Kataliticheskoe gidrirovanie i gidrogenoliz uglevodov, Moscow: Khimiya, 1976, 193 p.
- Tan Z., Shi L., Zan Y., Miao G., Li S., Kong L., Li S., Sun Yu. Crucial role of support in glucose selective conversion into 1,2-propanediol and ethylene glycol over Ni-based catalysts: A combined experimental and computational study // Appl. Catal. A. Gen. 2018. V. 560. P. 28-36. https://doi.org/10.1016/j.apcata.2018.04.026
- Zeng A.-P., Sabra W. Microbial production of diols as platform chemicals: Recent progresses // Curr. Opin. Biotechnol. 2011. V. 22. N 6. P. 749-757. https://doi.org/10.1016/j.copbio.2011.05.005
- Ji X.-J., Huang H., Ouyang P.-K. Microbial 2,3butanediol production: A state-of-the-art review // Biotechnol Adv. 2011. V. 29. N 3. P. 351-364. https://doi.org/10.1016/j.biotechadv.2011.01.007
- Xue C., Zhao J., Lu C., Yang S.-T., Bai F., Tang I.-C. High-titer n -butanol production by clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping // Biotechnol. Bioeng. 2012. V. 109. N 11. P. 2746-2756. https://doi.org/10.1002/bit.24563
- Jang Y.-S., Malaviya A., Lee S.Y. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19 // Biotechnol. Bioeng. 2013. V. 110. N 6. P. 1646-1653. https://doi.org/10.1002/bit.24843
- Mohd Azhar S.H., Abdulla R., Jambo S.A., Marbawi H., Gansau J.A., Mohd Faik A.A., Rodrigues K.F. Yeasts in sustainable bioethanol production: A review // Biochem. Biophys. Reports. 2017. V. 10. P. 52-61. https://doi.org/10.1016/j.bbrep.2017.03.003
- Núñez Caraballo A., Iliná A., Ramos González R., Aguilar C.N., Michelena Álvarez G., Flores Gallegos A.C., Sandoval-Cortes J., Aguilar-Gonzalez M.A., SotoCruz N.O. Garcia Garcia J.D., Martinez-Hernandez J.L. Sustainable ethanol production from sugarcane molasses by saccharomyces cerevisiae immobilized on chitosan-coated manganese ferrite // Front Sustain Food Syst. 2021. V. 5. https://doi.org/10.3389/fsufs.2021.683170
- Harvey B.G., Merriman W.W., Quintana R.L. Renewable gasoline, solvents, and fuel additives from 2,3-butanediol // ChemSusChem. 2016. V. 9. № 14. P. 1814-1819. https://doi.org/10.1002/cssc.201600225
- Samoilov V.O., Borisov R.S., Stolonogova T.I., Zarezin D.P., Maximov A.L., Bermeshev M.V., Chernysheva E.A., Kapustin V.M. Glycerol to renewable fuel oxygenates. Part II: Gasoline-blending characteristics of glycerol and glycol derivatives with C3-C4 alkyl(idene) substituents // Fuel. 2020. V. 280. P. 118585. https://doi.org/10.1016/j.fuel.2020.118585
- Samoilov V., Ni D., Goncharova A., Zarezin D., Kniazeva M., Ladesov A., Kosyakov D., Bermeshev M., Maximov A. Bio-based solvents and gasoline components from renewable 2,3-butanediol and 1,2-propanediol: Synthesis and characterization // Molecules. 2020. V. 25. № 7. P. 1723. https://doi.org/10.3390/molecules25071723
- Roze M., Kampars V., Teivena K., Kampare R., Liepins E. Catalytic etherification of glycerol with alcohols // Mater Sci. Appl. Chem. 2013. V. 28. № 28. P. 67. https://doi.org/10.7250/msac.2013.011
- González M.D., Cesteros Y., Salagre P. Establishing the role of Brønsted acidity and porosity for the catalytic etherification of glycerol with tert-butanol by modifying zeolites // Appl. Catal. A. Gen. 2013. V. 450. P. 178-188. https://doi.org/10.1016/j.apcata.2012.10.028
- Ozbay N., Oktar N., Dogu G., Dogu T. Activity comparison of different solid acid catalysts in etherification of glycerol with tert-butyl alcohol in flow and batch reactors // Top. Catal. 2013. V. 56. № 18-20. P. 1790-1803. https://doi.org/10.1007/s11244-013-0116-0
- Ershov M.A., Potanin D.A., Tarazanov S.V., Abdellatief T.M.M., Kapustin V.M. Blending characteristics of isooctene, MTBE, and TAME as gasoline components // Energy & Fuels. 2020. V. 34. № 3. P. 2816-2823. https://doi.org/10.1021/acs.energyfuels.9b03914
- Abdellatief T.M.M., Ershov M.A., Kapustin V.M., Ali Abdelkareem M., Kamil M., Olabi A.G. Recent trends for introducing promising fuel components to enhance the anti-knock quality of gasoline: A systematic review // Fuel. 2021. V. 291. P. 120112. https://doi.org/10.1016/j.fuel.2020.120112
- Abdellatief T.M.M., Ershov M.A., Kapustin V.M., Chernysheva E.A., Savelenko V.D., Makhmudova A.E., Potanin D.A., Salameh T., Abdelkareem M.A., Olabi A.G. Innovative conceptional approach to quantify the potential benefits of gasoline-methanol blends and their conceptualization on fuzzy modeling // Int. J. Hydrogen Energy. 2022. V. 47. № 82. P. 35096-35111. https://doi.org/10.1016/j.ijhydene.2022.08.076
- Mužíková Z., Pospíšil M., Šebor G. Volatility and phase stability of petrol blends with ethanol // Fuel. 2009. V. 88. № 8. P. 1351-1356. https://doi.org/10.1016/j.fuel.2009.02.003
- Agarwal A.K., Karare H., Dhar A. Combustion, performance, emissions and particulate characterization of a methanol-gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine // Fuel Process Technol. 2014. V. 121. P. 16-24. https://doi.org/10.1016/j.fuproc.2013.12.014
Supplementary files
