Hydrogenation of Acetylene over Pd–Ag/Sibunit Catalysts: Effect of the Deposition Sequence of Active Component Precursors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study investigates interactions between palladium and silver in Pd–Ag bimetallic catalysts supported on a mesoporous carbon material Sibunit and, in particular, the dependence of these interactions on the deposition sequence of the metal precursors. Using XRD and TEM results, it was shown that impregnating the support with an aqueous solution that contained nitrate salts of both metals, followed by hydrogen treatment at 500°C, generates uniformly sized Pd0.6Ag0.4 particles (dav = 5.6 nm). These particles exhibit high selectivity (79%) in the reaction of acetylene hydrogenation to ethylene. The catalysts synthesized by sequential impregnation of the support with solutions of Pd and Ag nitrates interleaved with heat treatment in H2 exhibited a lower selectivity (68–73%) due to the formation of particles non-uniform both in composition and size (about 4 to 60 nm). The IR spectroscopy data suggest this effect is presumably associated with the removal of O-containing functional groups from the carbon surface during the reduction of the supported precursor. Given that O-groups act as anchoring sites for the precursors of active components and suppress the ability of Sibunit to reduce metals from their salt solutions, the subsequent deposition of the second metal salt causes a non-uniform distribution of this metal on the surface and the generation of larger particles.

About the authors

D. V. Yurpalova

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Email: omsk-glyzdova@mail.ru
644040, Omsk, Russia

T. N. Afonasenko

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Email: petrochem@ips.ac.ru
644040, Omsk, Russia

M. V. Trenikhin

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Email: petrochem@ips.ac.ru
644040, Omsk, Russia

N. N. Leont'eva

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Email: petrochem@ips.ac.ru
644040, Omsk, Russia

A. B. Arbuzov

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Email: petrochem@ips.ac.ru
644040, Omsk, Russia

V. L. Temerev

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Email: petrochem@ips.ac.ru
644040, Omsk, Russia

D. A. Shlyapin

Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis

Author for correspondence.
Email: petrochem@ips.ac.ru
644040, Omsk, Russia

References

  1. Dehghani O., Rahimpour M.R., Shariati A. An experimental approach on industrial Pd-Ag supported α-Al2O3 catalyst used in acetylene hydrogenation process: mechanism, kinetic and catalyst decay // Processes. 2019. V. 7. Р. 136-143. https://doi.org/10.3390/pr7030136
  2. Zhang J., Sui Z., Zhu Y., Chen D., Zhou X., Yuan W. Composition of the green oil in hydrogenation of acetylene over a commercial Pd-Ag/Al2O3 catalyst // Chem. Eng. Technol. 2016. V. 39. № 5. P. 865-873. https://doi.org/10.1002/ceat.201600020
  3. Ravanchi M.T., Sahebdelfar S. Pd-Ag/Al2O3 catalyst: Stages of deactivation in tail-end acetylene selective hydrogenation // Appl. Catal. A Gen. 2016. V. 525. P. 197-203. https://doi.org/10.1016/j.apcata.2016.07.014
  4. Chai S., Gao D., Xia J., Yang Y., Wang X. Facile synthesis of palladium-silver dilute alloy catalyst for acetylene hydrogenation // ChemCatChem. 2023. V. 15. № 6. I. e202300217. https://doi.org/10.1002/cctc.202300217
  5. Ravindran K., Madhu G., Renjith V.R., Rugmini S. Performance of the ρ-Al2O3 based Ag promoted Pd/Al2O3 catalyst during Acetylene hydrogenation with an ideal feed // J. of the Indian Chem. Soc. 2023. V. 100. № 2. I. 100884.
  6. Che C., Gou G., Wen H., Liang Y., Han W., Zhang F., Cai X. Study on the reaction mechanism of acetylene selective hydrogenation catalysts Pd-Ag/Al2O3 // Inorganic and Nano-Metal Chemistry. 2021. V. 51. № 1. P. 70-77. https://doi.org/10.1080/24701556.2020.I.1762217
  7. Johnson M.M., Peterson E.R., Gattis S.C. Process for liquid phase hydrogenation // Patent USА № 8410015B2 2013.
  8. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont'eva N.N., Prosvirin I.P., Bukhtiyarov A.V., Shlyapin D.A. Liquid-phase acetylene hydrogenation over Ag-modified Pd/sibunit catalysts: Effect of Pd to Ag molar ratio // Applied Catalysis A: General. 2020. V. 600. I. 117627. https://doi.org/10.1016/j.apcata.2020.117627
  9. Zhu S., Hou R., Wang T. Effects of Supports and promoter Ag- on Pd-catalysts for selective hydrogenation of acetylene // Chinese J. of Process Engineering. 2012. V. 12. № 3. P. 489-496.
  10. Allison E.G., Bond G.C. The structure and catalytic properties of palladium-silver and palladium-gold alloys // Catal. Rev. 1972. V. 7. P. 233-289. https://doi.org/10.1080/01614947208062259
  11. González S., Neyman K.M., Shaikhutdinov S., Freund H.-J., Illas F. On the promoting role of Ag in selective hydrogenation reactions over Pd-Ag bimetallic catalysts: A theoretical study // J. Phys. Chem. C. 2007. V. 111. P. 6852-6856. https://doi.org/10.1021/jp071584v
  12. Стахеев А.Ю., Смирнова Н.С., Марков П.В., Баева Г.Н., Брагина Г.О., Рассолов А.В., Машковский И.С. Адсорбционно-стимулированная сегрегация как метод направленного модифицирования поверхности биметаллического Pd-Ag-катализатора // Кинетика и катализ. 2018. Т. 59. № 5. С. 601-609. EDN: UWZKNE
  13. Stakheev A.Y., Smirnova N.S., Markov P.V., Baeva G.N., Bragina G.O., Rassolov A.V., Mashkovsky I.S. Adsorption-induced segregation as a method for the target-oriented modification of the surface of a bimetallic Pd-Ag catalyst // Kinetics and Catalysis. 2018. V. 59. № 5. P. 610-617. https://doi.org/10.1134/S0023158418050154.
  14. Bukhtiyarov A.V., Panafidin M.A., Prosvirin I.P., Mashkovsky I.S., Markov P.V., Rassolov A.V., Smirnova N.S., Baeva G.N., Rameshan C., Rameshan R., Zubavichus Y.V., Bukhtiyarov V.I., Stakheev A.Yu. Boosting the activity of PdAg2/Al2O3 supported catalysts towards the selective acetylene hydrogenation by means of CO-induced segregation: A combined NAP XPS and mass-spectrometry study // Applied Surface Science. 2022. V. 604. I. 154497. https://doi.org/10.1016/j.apsusc.2022.154497
  15. Cao Y., Sui Z., Zhu Y., Zhou X., Chen D. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: promotional effect of indium and composition-dependent performance // ACS Catalysis. 2017. V. 7. P. 7835-7846. https://doi.org/10.1021/acscatal.7b01745
  16. Pei, G.X., Liu X., Wang A., Lee A.F., Isaacs M.A., Li L., Pan X., Yang X., Wang X., Tai Z., Wilson K., Zhang T. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene // ACS Catalysis. 2015. V. 5. № 6. P. 3717-3725. https://doi.org/10.1021/acscatal.5b00700
  17. Mei D., Neurock M., Smith C.M. Hydrogenation of acetylene-ethylene mixtures over Pd- and Pd-Ag alloys: first-principles-based kinetic Monte Carlo simulations // J. Catal. 2009. V. 268. P. 181-195. https://doi.org/doi.org/10.1016/j.jcat.2009.09.004
  18. Huang W., McCormick J.R., Lobo R.F., Chen J.G. Selective hydrogenation of acetylene in the presence of ethylene on zeolite-supported bimetallic catalysts // J. of Catalysis. 2007. V. 246. № 1. P. 40-51. https://doi.org/10.1016/j.jcat.2006.11.013
  19. Vignola E., Steinmann S.N., Farra A.A., Vandegehuchte B.D., Curulla D., Sautet P. Evaluating the risk of C-C bond formation during selective hydrogenation of acetylene on palladium // ACS Catalysis. 2018. V. 8. № 3. P. 1662-1671. https://doi.org/10.1021/acscatal.7b03752
  20. Benavidez A.D., Burton P.D., Nogales J.L., Jenkins A.R., Ivanov S.A., Miller J.T., Karim A.M., Datye A.K. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene // Appl. Cat. A. 2014. V. 482. P. 108-115. https://doi.org/10.1016/j.apcata.2014.05.027
  21. Stakheev A.Yu., Kustov L.M. Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s // Appl. Cat. A. 1999. V. 188. P. 3-35. https://doi.org/10.1016/S0926-860X(99)00232-X
  22. Ламберов А.А., Егорова С.Р., Ильясов И.Р., Гильманов Х.Х., Трифонов С.В., Шатилов В.М., Зиятдинов А.Ш. Изменения в процессе реакции и регенерации Pd-Ag/Al2O3-катализатора селективного гидрирования ацетилена // Кинетика и катализ. 2007. Т. 48. № 1. С. 143-149
  23. Lamberov A.A., Egorova S.R., Il'yasov I.R., Gil'manov Kh.Kh., Trifonov S.V., Shatilov V.M., Ziyatdinov A.Sh. Changes in the course of reaction and regeneration of a Pd-Ag/Al2O3 catalyst for the selective hydrogenation of acetylene // Kinetics and Catalysis. 2007. V. 48. № 1. P. 136-142. https://doi.org/10.1134/S0023158407010181.
  24. Чесноков В.В., Чичкань А.С., Исмагилов З.Р. Свойства Pd-Ag/С-катализаторов в реакции селективного гидрирования ацетилена // Кинетика и катализ. 2017. Т. 58. № 5. С. 662-667. EDN
  25. Chesnokov V.V., Chichkan A.S., Ismagilov Z.R. Properties of Pd-Ag/C catalysts in the reaction of selective hydrogenation of acetylene // Kinetics and Catalysis. 2017. V. 58. № 5. P. 649-654. https://doi.org/10.1134/S0023158417050020.
  26. Dodangeh F., Rashidi A., Aghaie H., Zare K. Synthesis of novel Ag-modified Pd-supported mesoporous carbon nitride for selective hydrogenation of acetylene with an excellence ethylene selectivity // J. Phys. Chem. Solids. 2021. V. 158. I. 110219. https://doi.org/10.1016/j.jpcs.2021.110219
  27. Yermakov Y.I., Surovikin V.F., Plaksin G.V., Semikolenov V.A., Likholobov V.A., Chuvilin L.V., Bogdanov S.V. New carbon material as support for catalysts // React. Kinet. Mech. Catal. 1987. V. 33. № 2. P. 435-440. https://doi.org/10.1007/BF02128102
  28. Gurrath M., Kuretzky T., Boehm H.P., Okhlopkova L.B., Lisitsyn A.S., Likholobov V.A. Palladium catalysts on activated carbon supports: Influence of reduction temperature, origin of the support and pretreatments of the carbon surface // Carbon. 2000. V. 38. № 8. P. 1241-1255. https://doi.org/10.1016/S0008-6223(00)00026-9
  29. Княжева О.А., Бакланова О.Н., Лавренов А.В. Каталитическое дегидрирование на углероде // Химия твердого топлива. 2020. № 6. С. 5-14
  30. Knyazheva O.A., Baklanova O.N., Lavrenov A.V. Catalytic dehydrogenation on carbon // Solid Fuel Chemistry. 2020. V. 54. № 6. P. 345-353. https://doi.org/10.3103/S0361521920060051.
  31. Шляпин Д.А., Глыздова Д.В., Афонасенко Т.Н., Темерев В.Л., Цырульников П.Г. Гидрирование ацетилена в этилен в обогащенной водородом газовой смеси на катализаторе Pd/cибунит // Кинетика и катализ. 2019. T. 60. № 4. С. 479-485
  32. Shlyapin D.A., Glyzdova D.V., Afonasenko T.N., Temerev V.L., Tsyrul'nikov P.G. Acetylene hydrogenation to ethylene in a hydrogen-rich gaseous mixture on a Pd/Sibunit catalyst // Kinetics and Catalysis. 2019. V. 60. № 4. P. 446-452. https://doi.org/10.1134/S0023158419040165.
  33. Benipal N., Qi J., Liu Q., Li W. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells // Appl. Cat. B. 2017. V. 210. P. 121-130. https://doi.org/10.1016/j.apcatb.201.02.082
  34. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont'eva N.N., Trenikhin M.V., Kremneva A.M., Shlyapin D.A. Effect of pretreatment with hydrogen on the structure and properties of carbon-supported Pd-Ag-nanoalloys for ethylene production by acetylene hydrogenation // Molecular Catalysis. 2021. V. 511. I. 111717. https://doi.org/10.1016/j.mcat.2021.111717
  35. Yin Z., Zhang Y., Chen K., Li J., Li W., Tang P., Zhao H., Zhu Q., Bao X., Ma D. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation // Scientific Reports. 2014. V. 4. I. 4288. https://doi.org/10.1038/srep04288
  36. Simonov P.A., Romanenko A.V., Prosvirin I.P., Moroz E.M., Boronin A.I., Chuvilin A.L., Likholobov V.A. On the nature of the interaction of H2PdCl4 with the surface of graphite-like carbon materials // Carbon. 1997. V. 35. № 1. P. 73-82. https://doi.org/10.1016/S0008-6223(96)00129-7
  37. Simonov P.A., Romanenko A.V., Prosvirin I.P., Kryukova G.N., Chuvilin A.L., Bogdanov S.V., Moroz E.M., Likholobov V.A. Electrochemical behaviour of quasigraphitic carbons at formation of supported noble metal catalysts // Studies in Surface Science and Catalysis. 1998. V. 118. P. 15-30. https://doi.org/10.1016/S0167-2991(98)80164-X
  38. Serp P., Figueiredo J.L. Carbon Materials for Catalysis. USA: John Wiley & Sons. 2009. 608 р.
  39. German D., Kolobova E., Pakrieva E., Carabineiro S.A.C., Sviridova E., Perevezentsev S., Alijani S., Villa A., Prati L., Postnikov P., Bogdanchikova N., Pestryakov A. The effect of sibunit carbon surface modi cation with diazonium tosylate salts of Pd and Pd-Аu catalysts on furfural hydrogenation // Materials. 2022. V. 15. I. 4695. https://doi.org/10.3390/ma15134695
  40. Rehman A., Park M., Park S.J. Current progress on the surface chemical modification of carbonaceous materials // Coatings. 2019. V. 9. I. 103. https://doi.org/10.3390/coatings9020103
  41. He Y., Liu Y., Yang P., Du Y., Feng J., Cao X., Yang J., Li D. Fabrication of a PdAg mesocrystal catalyst for the partial hydrogenation of acetylene // J. Catal. 2015. V. 330. P. 61-70. https://doi.org/10.1016/j.jcat.2015.06.017
  42. Glyzdova D.V., Afonasenko T.N., Talsi V.P., Shlyapin D.A. Stability of Pd/sibunit and Pd-M/sibunit (M: Zn, Ag) catalysts for gas-phase acetylene hydrogenation // AIP Conference Proceedings. 2020. V. 2301. I. 030005. https://doi.org/10.1063/5.0032868

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences