Hydrogenation of Acetylene over Pd–Ag/Sibunit Catalysts: Effect of the Deposition Sequence of Active Component Precursors
- Authors: Yurpalova D.V.1, Afonasenko T.N.1, Trenikhin M.V.1, Leont'eva N.N.1, Arbuzov A.B.1, Temerev V.L.1, Shlyapin D.A.1
-
Affiliations:
- Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis
- Issue: Vol 63, No 4 (2023)
- Pages: 582-594
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655604
- DOI: https://doi.org/10.31857/S0028242123040123
- EDN: https://elibrary.ru/OQDXIX
- ID: 655604
Cite item
Abstract
The study investigates interactions between palladium and silver in Pd–Ag bimetallic catalysts supported on a mesoporous carbon material Sibunit and, in particular, the dependence of these interactions on the deposition sequence of the metal precursors. Using XRD and TEM results, it was shown that impregnating the support with an aqueous solution that contained nitrate salts of both metals, followed by hydrogen treatment at 500°C, generates uniformly sized Pd0.6Ag0.4 particles (dav = 5.6 nm). These particles exhibit high selectivity (79%) in the reaction of acetylene hydrogenation to ethylene. The catalysts synthesized by sequential impregnation of the support with solutions of Pd and Ag nitrates interleaved with heat treatment in H2 exhibited a lower selectivity (68–73%) due to the formation of particles non-uniform both in composition and size (about 4 to 60 nm). The IR spectroscopy data suggest this effect is presumably associated with the removal of O-containing functional groups from the carbon surface during the reduction of the supported precursor. Given that O-groups act as anchoring sites for the precursors of active components and suppress the ability of Sibunit to reduce metals from their salt solutions, the subsequent deposition of the second metal salt causes a non-uniform distribution of this metal on the surface and the generation of larger particles.
About the authors
D. V. Yurpalova
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis
Email: omsk-glyzdova@mail.ru
644040, Omsk, Russia
T. N. Afonasenko
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis
Email: petrochem@ips.ac.ru
644040, Omsk, Russia
M. V. Trenikhin
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis
Email: petrochem@ips.ac.ru
644040, Omsk, Russia
N. N. Leont'eva
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis
Email: petrochem@ips.ac.ru
644040, Omsk, Russia
A. B. Arbuzov
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis
Email: petrochem@ips.ac.ru
644040, Omsk, Russia
V. L. Temerev
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis
Email: petrochem@ips.ac.ru
644040, Omsk, Russia
D. A. Shlyapin
Center of New Chemical Technologies BIC, Boreskov Institute of Catalysis
Author for correspondence.
Email: petrochem@ips.ac.ru
644040, Omsk, Russia
References
- Dehghani O., Rahimpour M.R., Shariati A. An experimental approach on industrial Pd-Ag supported α-Al2O3 catalyst used in acetylene hydrogenation process: mechanism, kinetic and catalyst decay // Processes. 2019. V. 7. Р. 136-143. https://doi.org/10.3390/pr7030136
- Zhang J., Sui Z., Zhu Y., Chen D., Zhou X., Yuan W. Composition of the green oil in hydrogenation of acetylene over a commercial Pd-Ag/Al2O3 catalyst // Chem. Eng. Technol. 2016. V. 39. № 5. P. 865-873. https://doi.org/10.1002/ceat.201600020
- Ravanchi M.T., Sahebdelfar S. Pd-Ag/Al2O3 catalyst: Stages of deactivation in tail-end acetylene selective hydrogenation // Appl. Catal. A Gen. 2016. V. 525. P. 197-203. https://doi.org/10.1016/j.apcata.2016.07.014
- Chai S., Gao D., Xia J., Yang Y., Wang X. Facile synthesis of palladium-silver dilute alloy catalyst for acetylene hydrogenation // ChemCatChem. 2023. V. 15. № 6. I. e202300217. https://doi.org/10.1002/cctc.202300217
- Ravindran K., Madhu G., Renjith V.R., Rugmini S. Performance of the ρ-Al2O3 based Ag promoted Pd/Al2O3 catalyst during Acetylene hydrogenation with an ideal feed // J. of the Indian Chem. Soc. 2023. V. 100. № 2. I. 100884.
- Che C., Gou G., Wen H., Liang Y., Han W., Zhang F., Cai X. Study on the reaction mechanism of acetylene selective hydrogenation catalysts Pd-Ag/Al2O3 // Inorganic and Nano-Metal Chemistry. 2021. V. 51. № 1. P. 70-77. https://doi.org/10.1080/24701556.2020.I.1762217
- Johnson M.M., Peterson E.R., Gattis S.C. Process for liquid phase hydrogenation // Patent USА № 8410015B2 2013.
- Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont'eva N.N., Prosvirin I.P., Bukhtiyarov A.V., Shlyapin D.A. Liquid-phase acetylene hydrogenation over Ag-modified Pd/sibunit catalysts: Effect of Pd to Ag molar ratio // Applied Catalysis A: General. 2020. V. 600. I. 117627. https://doi.org/10.1016/j.apcata.2020.117627
- Zhu S., Hou R., Wang T. Effects of Supports and promoter Ag- on Pd-catalysts for selective hydrogenation of acetylene // Chinese J. of Process Engineering. 2012. V. 12. № 3. P. 489-496.
- Allison E.G., Bond G.C. The structure and catalytic properties of palladium-silver and palladium-gold alloys // Catal. Rev. 1972. V. 7. P. 233-289. https://doi.org/10.1080/01614947208062259
- González S., Neyman K.M., Shaikhutdinov S., Freund H.-J., Illas F. On the promoting role of Ag in selective hydrogenation reactions over Pd-Ag bimetallic catalysts: A theoretical study // J. Phys. Chem. C. 2007. V. 111. P. 6852-6856. https://doi.org/10.1021/jp071584v
- Стахеев А.Ю., Смирнова Н.С., Марков П.В., Баева Г.Н., Брагина Г.О., Рассолов А.В., Машковский И.С. Адсорбционно-стимулированная сегрегация как метод направленного модифицирования поверхности биметаллического Pd-Ag-катализатора // Кинетика и катализ. 2018. Т. 59. № 5. С. 601-609. EDN: UWZKNE
- Stakheev A.Y., Smirnova N.S., Markov P.V., Baeva G.N., Bragina G.O., Rassolov A.V., Mashkovsky I.S. Adsorption-induced segregation as a method for the target-oriented modification of the surface of a bimetallic Pd-Ag catalyst // Kinetics and Catalysis. 2018. V. 59. № 5. P. 610-617. https://doi.org/10.1134/S0023158418050154.
- Bukhtiyarov A.V., Panafidin M.A., Prosvirin I.P., Mashkovsky I.S., Markov P.V., Rassolov A.V., Smirnova N.S., Baeva G.N., Rameshan C., Rameshan R., Zubavichus Y.V., Bukhtiyarov V.I., Stakheev A.Yu. Boosting the activity of PdAg2/Al2O3 supported catalysts towards the selective acetylene hydrogenation by means of CO-induced segregation: A combined NAP XPS and mass-spectrometry study // Applied Surface Science. 2022. V. 604. I. 154497. https://doi.org/10.1016/j.apsusc.2022.154497
- Cao Y., Sui Z., Zhu Y., Zhou X., Chen D. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: promotional effect of indium and composition-dependent performance // ACS Catalysis. 2017. V. 7. P. 7835-7846. https://doi.org/10.1021/acscatal.7b01745
- Pei, G.X., Liu X., Wang A., Lee A.F., Isaacs M.A., Li L., Pan X., Yang X., Wang X., Tai Z., Wilson K., Zhang T. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene // ACS Catalysis. 2015. V. 5. № 6. P. 3717-3725. https://doi.org/10.1021/acscatal.5b00700
- Mei D., Neurock M., Smith C.M. Hydrogenation of acetylene-ethylene mixtures over Pd- and Pd-Ag alloys: first-principles-based kinetic Monte Carlo simulations // J. Catal. 2009. V. 268. P. 181-195. https://doi.org/doi.org/10.1016/j.jcat.2009.09.004
- Huang W., McCormick J.R., Lobo R.F., Chen J.G. Selective hydrogenation of acetylene in the presence of ethylene on zeolite-supported bimetallic catalysts // J. of Catalysis. 2007. V. 246. № 1. P. 40-51. https://doi.org/10.1016/j.jcat.2006.11.013
- Vignola E., Steinmann S.N., Farra A.A., Vandegehuchte B.D., Curulla D., Sautet P. Evaluating the risk of C-C bond formation during selective hydrogenation of acetylene on palladium // ACS Catalysis. 2018. V. 8. № 3. P. 1662-1671. https://doi.org/10.1021/acscatal.7b03752
- Benavidez A.D., Burton P.D., Nogales J.L., Jenkins A.R., Ivanov S.A., Miller J.T., Karim A.M., Datye A.K. Improved selectivity of carbon-supported palladium catalysts for the hydrogenation of acetylene in excess ethylene // Appl. Cat. A. 2014. V. 482. P. 108-115. https://doi.org/10.1016/j.apcata.2014.05.027
- Stakheev A.Yu., Kustov L.M. Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s // Appl. Cat. A. 1999. V. 188. P. 3-35. https://doi.org/10.1016/S0926-860X(99)00232-X
- Ламберов А.А., Егорова С.Р., Ильясов И.Р., Гильманов Х.Х., Трифонов С.В., Шатилов В.М., Зиятдинов А.Ш. Изменения в процессе реакции и регенерации Pd-Ag/Al2O3-катализатора селективного гидрирования ацетилена // Кинетика и катализ. 2007. Т. 48. № 1. С. 143-149
- Lamberov A.A., Egorova S.R., Il'yasov I.R., Gil'manov Kh.Kh., Trifonov S.V., Shatilov V.M., Ziyatdinov A.Sh. Changes in the course of reaction and regeneration of a Pd-Ag/Al2O3 catalyst for the selective hydrogenation of acetylene // Kinetics and Catalysis. 2007. V. 48. № 1. P. 136-142. https://doi.org/10.1134/S0023158407010181.
- Чесноков В.В., Чичкань А.С., Исмагилов З.Р. Свойства Pd-Ag/С-катализаторов в реакции селективного гидрирования ацетилена // Кинетика и катализ. 2017. Т. 58. № 5. С. 662-667. EDN
- Chesnokov V.V., Chichkan A.S., Ismagilov Z.R. Properties of Pd-Ag/C catalysts in the reaction of selective hydrogenation of acetylene // Kinetics and Catalysis. 2017. V. 58. № 5. P. 649-654. https://doi.org/10.1134/S0023158417050020.
- Dodangeh F., Rashidi A., Aghaie H., Zare K. Synthesis of novel Ag-modified Pd-supported mesoporous carbon nitride for selective hydrogenation of acetylene with an excellence ethylene selectivity // J. Phys. Chem. Solids. 2021. V. 158. I. 110219. https://doi.org/10.1016/j.jpcs.2021.110219
- Yermakov Y.I., Surovikin V.F., Plaksin G.V., Semikolenov V.A., Likholobov V.A., Chuvilin L.V., Bogdanov S.V. New carbon material as support for catalysts // React. Kinet. Mech. Catal. 1987. V. 33. № 2. P. 435-440. https://doi.org/10.1007/BF02128102
- Gurrath M., Kuretzky T., Boehm H.P., Okhlopkova L.B., Lisitsyn A.S., Likholobov V.A. Palladium catalysts on activated carbon supports: Influence of reduction temperature, origin of the support and pretreatments of the carbon surface // Carbon. 2000. V. 38. № 8. P. 1241-1255. https://doi.org/10.1016/S0008-6223(00)00026-9
- Княжева О.А., Бакланова О.Н., Лавренов А.В. Каталитическое дегидрирование на углероде // Химия твердого топлива. 2020. № 6. С. 5-14
- Knyazheva O.A., Baklanova O.N., Lavrenov A.V. Catalytic dehydrogenation on carbon // Solid Fuel Chemistry. 2020. V. 54. № 6. P. 345-353. https://doi.org/10.3103/S0361521920060051.
- Шляпин Д.А., Глыздова Д.В., Афонасенко Т.Н., Темерев В.Л., Цырульников П.Г. Гидрирование ацетилена в этилен в обогащенной водородом газовой смеси на катализаторе Pd/cибунит // Кинетика и катализ. 2019. T. 60. № 4. С. 479-485
- Shlyapin D.A., Glyzdova D.V., Afonasenko T.N., Temerev V.L., Tsyrul'nikov P.G. Acetylene hydrogenation to ethylene in a hydrogen-rich gaseous mixture on a Pd/Sibunit catalyst // Kinetics and Catalysis. 2019. V. 60. № 4. P. 446-452. https://doi.org/10.1134/S0023158419040165.
- Benipal N., Qi J., Liu Q., Li W. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells // Appl. Cat. B. 2017. V. 210. P. 121-130. https://doi.org/10.1016/j.apcatb.201.02.082
- Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont'eva N.N., Trenikhin M.V., Kremneva A.M., Shlyapin D.A. Effect of pretreatment with hydrogen on the structure and properties of carbon-supported Pd-Ag-nanoalloys for ethylene production by acetylene hydrogenation // Molecular Catalysis. 2021. V. 511. I. 111717. https://doi.org/10.1016/j.mcat.2021.111717
- Yin Z., Zhang Y., Chen K., Li J., Li W., Tang P., Zhao H., Zhu Q., Bao X., Ma D. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation // Scientific Reports. 2014. V. 4. I. 4288. https://doi.org/10.1038/srep04288
- Simonov P.A., Romanenko A.V., Prosvirin I.P., Moroz E.M., Boronin A.I., Chuvilin A.L., Likholobov V.A. On the nature of the interaction of H2PdCl4 with the surface of graphite-like carbon materials // Carbon. 1997. V. 35. № 1. P. 73-82. https://doi.org/10.1016/S0008-6223(96)00129-7
- Simonov P.A., Romanenko A.V., Prosvirin I.P., Kryukova G.N., Chuvilin A.L., Bogdanov S.V., Moroz E.M., Likholobov V.A. Electrochemical behaviour of quasigraphitic carbons at formation of supported noble metal catalysts // Studies in Surface Science and Catalysis. 1998. V. 118. P. 15-30. https://doi.org/10.1016/S0167-2991(98)80164-X
- Serp P., Figueiredo J.L. Carbon Materials for Catalysis. USA: John Wiley & Sons. 2009. 608 р.
- German D., Kolobova E., Pakrieva E., Carabineiro S.A.C., Sviridova E., Perevezentsev S., Alijani S., Villa A., Prati L., Postnikov P., Bogdanchikova N., Pestryakov A. The effect of sibunit carbon surface modi cation with diazonium tosylate salts of Pd and Pd-Аu catalysts on furfural hydrogenation // Materials. 2022. V. 15. I. 4695. https://doi.org/10.3390/ma15134695
- Rehman A., Park M., Park S.J. Current progress on the surface chemical modification of carbonaceous materials // Coatings. 2019. V. 9. I. 103. https://doi.org/10.3390/coatings9020103
- He Y., Liu Y., Yang P., Du Y., Feng J., Cao X., Yang J., Li D. Fabrication of a PdAg mesocrystal catalyst for the partial hydrogenation of acetylene // J. Catal. 2015. V. 330. P. 61-70. https://doi.org/10.1016/j.jcat.2015.06.017
- Glyzdova D.V., Afonasenko T.N., Talsi V.P., Shlyapin D.A. Stability of Pd/sibunit and Pd-M/sibunit (M: Zn, Ag) catalysts for gas-phase acetylene hydrogenation // AIP Conference Proceedings. 2020. V. 2301. I. 030005. https://doi.org/10.1063/5.0032868
Supplementary files
