Comparative Catalytic Study for Upgrading Mexican Heavy Crude Oil
- Authors: Schacht-Hernandez P.1, Perez Romo P.1, C. Laredo G.1
-
Affiliations:
- Instituto Mexicano del Petroleo
- Issue: Vol 63, No 3 (2023)
- Pages: 305-313
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655609
- DOI: https://doi.org/10.31857/S0028242123030024
- EDN: https://elibrary.ru/JAFVDD
- ID: 655609
Cite item
Abstract
In this work, the study of three transition metal mixtures: cobalt-molybdenum (CoMo), nickel-molybdenum (NiMo), and nickel-cobalt-molybdenum (NiCoMo) with phosphorus supported on a γ-Al2O3 were studied for the hydroprocessing of heavy crude oil. The different metallic compositions were incorporated on gamma-alumina support by incipient wetness impregnation. The materials obtained were dried at 110°C and calcined to 450°C (4 h). The catalysts were evaluated using a Parr stainless steel batch reactor at 10.6 MPa and 380°C, for one hour. Mexican heavy crude oil named Ku-Ma-Loob Zaap was used and characterized according to its chemical composition: saturates, asphaltenes, resins, and aromatics (SARA). Sulfur and nitrogen were also determined by chemiluminescence techniques. The physical measurements for qualifying the transport properties were API gravity and kinematic viscosity. Among the tested catalysts, NiCoMoP/γ-Al2O3 presented the highest activity, increasing the API gravity from 12.6 to 24.5°API and decreasing the kinematic viscosity from 9.896 to 45 cSt at 25°C. The increasing activity was strongly related to the reducibility of the metals and weakly to the metals content. The surface area and pore volume did not change with the amount of metal, so no effect related to these properties was observed. Phosphorus presence was not discussed, since approximately the same amount was used in the three samples. However, it is known that phosphorus increased the hydrotreating activity due to the increased acidity of the catalyst, making trimetallic catalysts more active than bimetallic ones. In terms of the chemical composition of the upgraded crude oil, it was evident that the asphaltenes, sulfur, and nitrogen contents decreased sharply.
Keywords
About the authors
Persi Schacht-Hernandez
Instituto Mexicano del Petroleo
Email: petrochem@ips.ac.ru
Patricia Perez Romo
Instituto Mexicano del Petroleo
Email: petrochem@ips.ac.ru
Georgina C. Laredo
Instituto Mexicano del Petroleo
Author for correspondence.
Email: glaredo@imp.mx
References
- Owen N.A., Inderwildi O.R., King D.A. The status of conventional world oil reserves - Hype or cause for concern? // Energy Policy. 2010. V. 38. P. 4743-4749. https://doi.org/10.1016/j.enpol.2010.02.026
- Hart A. A review of technologies for transporting heavy crude oil and bitumen via pipelines // J. Petrol. Explor. Prod. Technol. 2014. V. 4. P. 327-336. https://doi.org/10.1007/s13202-013-0086-6
- Duyck C., Miekeley N., Porto da Silveira C.L., Aucélio R.Q., Campos R.C., Grinberg P., Brandão G.P. The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry // Spectroschim. Acta B. 2007. V. 62. P. 939-951. https://doi.org/10.1016/j.sab.2007.04.013
- Speight J.G. Heavy and extra-heavy oil upgrading technologies. 1st ed. Gulf Professional Publishing, UK, 2013. ISBN:978-0-12-404570-5
- Gawel I., Bociarska D., Biskupski P. Effect of asphaltenes on hydroprocessing of heavy oils and residua // Appl. Catal. A: Gen. 2005. V. 295. P. 89-94. https://doi.org/10.1016/j.apcata.2005.08.001
- Mukhamatdinov I.I., Khaidarova A.R., Zaripova R.D., Mukhamatdinova R.E., Sitnov S.A., Vakhin A.V. The composition and structure of ultra-dispersed mixed oxide(II, III) particles and their influence on in-situ conversion of heavy oil // Catalysts. 2020. V. 10. P. 114-120. https://doi.org/10.3390/catal10010114
- Leyva C., Rana M.S., Trejo F., Ancheyta J. On the use of acid-base-supported catalysts for hydroprocessing of heavy petroleum // Ind. Eng. Chem. Res. 2007. V. 46. P. 7448-7466. https://doi.org/10.1021/ie070128q
- Leyva C., Rana M.S., Trejo F., Ancheyta J. NiMo supported acidic catalysts for heavy oil hydroprocessing // Catal. Today. 2009. V. 141. P. 168-175. https://doi.org/10.1016/j.cattod.2008.03.030
- Ancheyta-Juarez J., Bentacourt-Rivera G., MarroquinSánchez G., Pérez-Arellano A.M., Maity S.K., Córtez Ma.T., del Río-Soto R. An exploratory study for obtaining synthetic crudes from heavy crude oils via hydrotreating // Energy Fuels. 2001. V. 15. P. 120-127. https://doi.org/10.1021/ef000141m
- Cáceres C., Fierro J.L.G., López Agudo A., Severino F., Laine J. Relation between hydrodesulfurization activity and the state of promoters in precursor calcined Ni-Co-Mo/Al2O3 // J. Catal. 1986. V. 97. P. 219-227. https://doi.org/10.1016/0021-9517(86)90052-7
- López-Agudo A., Fierro J.L.G., Cáceres C., Laine J., Severino F. Changes induced by calcination temperature of NiCo-Mo/Al2O3 hydrodesulfurization catalyst // Appl. Catal. 1987. V. 30. P. 185-188. https://doi.org/10.1016/S0166-9834(00)81024-6
- Homma T., Echard M., Leglise J. Investigation of NiCoMo/Al2O3 catalysts: Relationship between H2S adsorption and HDS activity // Catal. Today. 2005. V. 106. P. 238-242. https://doi.org/10.1016/j.cattod.2005.07.187
- Ninh T.K.T., Laurenti D., Leclerc E., Vrinat M. Support effect for CoMoS and CoNiMoS hydrodesulfurization catalysts prepared by controlled method // Appl. Catal. A: Gen. 2014. V. 487. P. 210-218. https://doi.org/10.1016/j.apcata.2014.07.042
- Lee D.K., Lee I.C., Woo S.I. Effects of transition metal addition to CoMo/γ-A12O3 catalyst on the hydrotreating reactions of atmospheric residual oil // Appl. Catal. A: Gen. 1994. V. 109. P. 195-210. https://doi.org/10.1016/0926-860X(94)80118-5
- Mikhail S., Riad M. Hydro-treatment of middle lubricating base oil on sulfided promoted molybdenum catalyst // Fuel Process. Technol. 2014. V. 128. P. 482-489. https://doi.org/10.1016/j.fuproc.2014.07.044
- Klimov O.V., Nadeina K.A., Dik P.P., Koryakina G.I., Pereyma V.Yu, Kazakov M.O., Budukva S.V., Gerasimov E.Yu., Prosvirin I.P., Kochubey D.I., Noskov A.S. CoNiMo/Al2O3 catalysts for deep hydrotreatment of vacuum gasoil // Catal. Today. 2016. V. 271. P. 56-63. https://doi.org/10.1016/j.cattod.2015.11.004
- Badoga S., Ganesan A., Dalai A.K., Chand S. Effect of synthesis technique on the activity of CoNiMo tri-metallic catalyst for hydrotreating of heavy gas oil // Catal. Today. 2017. V. 291. P. 160-171. https://doi.org/10.1016/j.cattod.2017.01.005
- Mashayekhi M., Soltanali S., Mohadecy S.R.S., Rashidzadeh M. Activity study of NiMoW, NiCoMo trimetallic catalysts for heavy gas oil hydrotreating // Pet. Chem. 2020. V. 60. P. 785-793. https://doi.org/10.1134/S0965544120070099
- Sigurdson S., Sundaramuthy V., Dalai A.K., Adjaye J. Phosphorus promoted trimetallic NiMoW/γ-Al2O3 sulfide catalysts in gas oil hydrotreating // J. Mol. Catal. A: Chem. 2008. V. 291. P. 30-37. https://doi.org/10.1016/j.molcata.2008.05.011
- Ferreira S.L.C., Bezerra M.A., Santos A.S., dos Santos W.N.L., Novaes C.G., de Oliveira O.M.C., Oliveira M.L., García R.L. Atomic absorption spectrometry - A multi element technique // Trends Anal. Chem. 2018. V. 100. P. 1-6. https://doi.org/10.1016/j.trac.2017.12.012
- Scholten J.J.F. Metal surface area and metal dispersion in catalysts // Stud. Surf. Sci. Catal. 1979. V. 3. P. 685-714. https://doi.org/10.1016/S0167-2991(09)60244-5
- Topsøe H., Clausen B.S., Candia R., Wivel C., Mørup S. In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: Evidence for and nature of a Co-Mo-S phase // J. Catal. 1981. V. 68. P. 433-452. https://doi.org/10.1016/0021-9517(81)90114-7
- Nikulshin P.A., Tomina N.N., Pimerzin A.A., Stakheev A.Yu., Mashkovsky I.S., Kogan V.M. Effect of the second metal of Anderson type heteropolycompounds on hydrogenation and hydrodesulphurization properties of XMo6(S)/Al2O3 and Ni3-XMo6(S)/Al2O3 catalysts // Appl. Catal. A: Gen. 2011. V. 393. P. 146-152. https://doi.org/10.1016/j.apcata.2010.11.033
- Al-Dalama K., Stanislaus A. Temperature programmed reduction of SiO2-Al2O3 supported Ni, Mo and NiMo catalysts prepared with EDTA // Thermochim. Acta. 2011. V. 520. P. 67-74. https://doi.org/10.1016/j.tca.2011.03.017
- Arnoldy P., Franken M.C., Scheffer B., Moulijn J.A. Temperature-programmed reduction of CoO-MoO3Al2O3 catalysts // J. Catal. 1985. V. 96. P. 381-395. https://doi.org/10.1016/0021-9517(85)90308-2
- Quincoces C.E., Perez de Vargas S.L., Gonzalez M.G., Diaz A., Montes M. Morphological changes of Ca promoted Ni/SiO2 catalysts and carbon deposition during CO2 reforming of methane // Stud. Surf. Sci. Catal. 1998. V. 119. P. 837-842. https://doi.org/10.1016/S0167-2991(98)80536-3
- Misono M. Chapter 2 - Chemistry and catalysis of mixed oxides // Stud. Surf. Sci. Catal. 2013. V. 176. P. 25-65. https://doi.org/10.1016/B978-0-444-53833-8.00002-8
- Pirola C., Galli F., Patience G.S. Experimental methods in chemical engineering: Temperature programmed reduction - TPR // Can. J. Chem. Eng. 2018. V. 93. P. 2317-2320. https://doi.org/10.1002/cjce.23317
- Speight J.G. Chapter 4 - Properties. In: Enhanced recovery methods for heavy oil and tar sands. 2009. P. 95-132. https://doi.org/10.1016/C2013-0-15525-0; https://doi.org/10.1016/B978-1-933762-25-8.50009-2
- Robinson P. Tutorial on hydroprocessing: hydroprocessing catalysts and processes. Conference: 2012 AIChE Spring National Meeting. https://www.researchgate.net/publication/267345317
- Sánchez-Minero F., Sánchez-Reyna G., Ancheyta J., Marroquin G. Comparison of correlations based on API gravity for predicting viscosity of crude oils // Fuel. 2014. V. 138. P. 193-199. https://doi.org/10.1016/j.fuel.2014.08.022
- Speight J.G., Chapter 8 - Upgrading heavy oil. In: Enhanced recovery methods for heavy oil and tar sands. 2009. P. 261-294. https://doi.org/10.1016/B978-1-933762-25-8.50013-4
- Scheffer B., Arnoldy P., Moulijn J.A. Sulfidability and hydrodesulfurization activity of Mo catalysts supported on alumina, silica, and carbon // J. Catal. 1988. V. 112. P. 516-527. https://doi.org/10.1016/0021-9517(88)90167-4
Supplementary files
