Oxidation of Sulfur Compounds by Sodium Hypochlorite over Molybdenum-Based Amphiphilic Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study reports on the oxidation of sulfur compounds by sodium hypochlorite over molybdenum-based amphiphilic catalysts. The conversion of dibenzothiophene (DBT) was investigated as a function of the catalyst composition and reaction conditions. When sodium hypochlorite was used in combination with the heptamolybdate-anion-containing amphiphilic catalyst, sulfur compounds were found to be effectively oxidized even at room temperature. Under optimum process conditions (an oxidant to sulfur molar ratio of 4 : 1, a catalyst concentration of 0.5 wt %, and an acetonitrile volume of 1 mL), 100% conversion of DBT to sulfone had already been achieved after ten min of oxidation. The addition of acetonitrile to the reaction mixture was found to minimize the aggregation of catalyst particles and enhance the process performance. The catalyst demonstrated sustained activity over five oxidation cycles without regeneration.

About the authors

K. P. Gevorgyan

Department of Chemistry, Lomonosov Moscow State University

Email: petrochem@ips.ac.ru
199991, Moscow, Russia

P. D. Polikarpova

Department of Chemistry, Lomonosov Moscow State University

Author for correspondence.
Email: polikarpova-polina@rambler.ru
199991, Moscow, Russia

References

  1. D'Hooghe P., Escamez S., Trouverie J., Avice J. Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms // BMC Plant Biology. 2013. V. 13. № 23. Р. 1-14. http://www.biomedcentral.com/1471-2229/13/23
  2. Muhammad Y., Lu Y., Shen C., Li C. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen // Energy Conversion and Management. 2011. V. 52. № 2. P. 1364-1370. https://doi.org/10.1016/j.enconman.2010.09.034
  3. Muhammad M., Li C. Dibenzothiophene hydrodesulfurization using in situ generated hydrogen over Pd promoted alumina-based catalysts // Fuel Processing Technology. 2016. V. 92. № 3. P. 624-630. https://doi.org/10.016/j.fuproc.2010.11.021
  4. Eßer J., Wasserscheid P., Jess A. Deep desulfurization of oil refinery streams by extraction with ionic liquids // Royal Society of Chemistry. 2004. V. 6. P. 316-322. https://doi.org/10.1039/b407028c
  5. Gao H., Zeng S., Liu X., Nie Y., Zhang X., Zhang S. Extractive desulfurization of fuel using N-butylpyridinium-based ionic liquids // Royal Society of Chemistry. 2015. V. 38. № 5. P. 30234-30238. https://doi.org/10.1039/C5RA03762J
  6. Yang Y., Lv G., Deng L., Lu B., Li J., Zhang J., Shi J., Du S. Ultra-deep desulfurization of diesel fuel via selective adsorption over modified activated carbon assisted by pre-oxidation // J. Cleaner Production. 2017. V. 161. P. 422-430. https://doi.org/10.1016/j.jclepro.2017.05.112
  7. Soleimani M., Bassi A., Margaritis A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels: A review // Biotechnology Advances. 2007. V. 25. № 6. P. 570-596. https://doi.org/10.1016/j.biotechadv.2007.07.003
  8. Li S., Li J., Gao Y., Liang L., Zhang R., Zhao J. Metal modified heteropolyacid incorporated into porous materials for a highly oxidative desulfurization of DBT under molecular oxygen // Fuel. 2017. V. 197. № 6. P. 551-561.
  9. He J., Zhou S., Wu P., Wu Y., He L., Zhu L., Zhu W., Li H. Multi-walled carbon nanotubes coated on defective tungsten oxide for deep oxidative desulfurization of diesel fuels // Fuel Processing Technology. 2022. V. 236. I. 107399. https://doi.org10.1016/j.fuproc.2022.107399
  10. Akopyan A.V., Eseva E.A., Tsaplin D.E., Latypova S.Sh., Makeeva D.A., Anisimov A.V., Maximov A.L., Karakhanov E.A. Deep aerobic desulfurization of fuels over iron-сontaining zeolite based catalysts // Chemic. Engineering J. Advances. 2022. V. 12. I. 100385. https://doi.org/10.1016/j.ceja.2022.100385
  11. Liu B., Xu X., Xue Y., Liu L., Yang F. Simultaneous desulfurization and denitrification from flue gas by catalytic ozonation combined with NH3/(NH4)2S2O8 absorption: mechanisms and recovery of compound fertilizer // Science of the Total Environment. 2019. V. 161. I. 36023. https://doi.org/10.1016/j.scitotenv.2019.136027
  12. Hossain M.N., Park H.C., Choi H.S. A Comprehensive review on catalytic oxidative desulfurization of liquid fuel oil // Catalysts. 2019. V. 229. № 9. Р. 1-12. https://doi.org/10.3390/catal9030229
  13. Ahmadian M., Anbia M. Highly efficient oxidative desulfurization catalyzed by copper-based materials using hydrogen peroxide as oxidant // Fuel. 2022. V. 55. № 29. P. 3923-3925. https://doi.org/10.1016/j.tetlet.2014.05.026
  14. Рахманов Э.В., Тараканова А.В., Валиева Т., Акопян А.В., Литвинова В.В., Максимов А.Л., Анисимов А.В., Вакарин С.В., Семерикова О.Л., Зайков Ю.П. Окислительное обессеривание дизельной фракции пероксидом водорода в присутствии катализаторов на основе переходных металлов // Нефтехимия. 2014. T. 54. № 1. C. 49-51. https://doi.org/10.7868/S0028242114010110
  15. Rakhmanov E.V., Tarakanova A.V., Valieva T., Akopyan A.V., Litvinova V.V., Maksimov A.L., Anisimov A.V., Vakarin S.V., Semerikova O.L., Zaikov Y.P. Oxidative desulfurization of diesel fraction with hydrogen peroxide in the presence of catalysts based on transition metals // Petrol. Chemistry. 2014. V. 54. № 1. P. 48-50. https://doi.org/10.7868/S0028242114010110.
  16. Irum S., Akhtar J., Sheikh N., Munir S. Oxidative desulfurization of Chakwal coal using potassium permanganate, ferric sulfate, and sodium hypochlorite // Energy Sources, Part A. 2017. V. 39. № 4. P. 426-432. https://doi.org/10.1080/15567036.2016.1222028
  17. Subhan S., Muhammad Y., Sahibzada M., Subhan F., Tong Z. Studies on the selection of a catalyst-oxidant system for the energy-efficient desulfurization and denitrogenation of fuel oil at mild operating conditions // Energy & Fuels. 2019. V. 33. P. 8423-8439. https://doi.org/10.1021/acs.energyfuels.9b01950
  18. Lü H., Deng C., Ren W., Yang X. Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids // Fuel Processing Technology. 2014. V. 119. P. 87-91. https://doi.org/10.1016/j.fuproc.2013.10.023
  19. Yu Z., Xun S., Jing M., Chen H., Song W., Chao Y., Rahmani M., Ding Y., Hua M., Liu J., Zhu W. Construction of 3D TiO2 nanoflower for deep catalytic oxidative desulfurization in diesel: Role of oxygen vacancy and Ti3+ // J. of Hazardous Materials. 2022. V. 59. № 41. P. 18471-18479. https://doi.org/10.1021/acs.iecr.0c03202
  20. Kirihara M., Suzuki K., Nakakura K., Saito K., Nakamura R., Tujimoto K., Sakamoto Y., Kikkawa Y., Shimazu H., Kimura Y. Oxidation of fluoroalkyl alcohols using sodium hypochlorite pentahydrate // J. of Fluorine Chemistry. 2021. V. 243. I. 109719. https://doi.org/10.1016/j.jfluchem.2020.109719
  21. Han Z., Yang S., Pan X., Zhao D., Yu J., Zhou Y., Xia P., Zheng D., Song Y., Yan Z. New experimental results of NO removal from simulated flue gas by wet scrubbing using NaClO solution // Energy & Fuels. 2017. V. 31. № 3. P. 3047-3054. https://doi.org/10.1021/acs.energyfuels.6b03062
  22. Wei B., Zhang B., Sun B., Jin Z., Xu X., Tian Y. Aqueous re-dispersibility of starch nanocrystal powder improved by sodium hypochlorite oxidation // Food Hydrocolloids. 2016. V. 51. P. 29-37 https://doi.org/10.1016/j.foodhyd.2015.06.006
  23. Coseri1 S., Biliuta G., Simionescu B.C. Selective oxidation of cellulose, mediated by N-hydroxyphthalimide, under metal-free environment // Polymer Chemistry. 2018. V. 9. № 8. https://doi.org/10.1039/C7PY01710C
  24. Jinga Z., Mahoneya S.A., Rodriguesb S., Balucana R.D., Underschultzc J., Esterleb J.S., Rufforda T.E., Steel K.M. A preliminary study of oxidant stimulation for enhancing coal seam permeability: Effects of sodium hypochlorite oxidation on subbituminous and bituminous Australian coals // International Journal of Coal Geology. 2018. V. 200. P. 36-44. https://doi.org/10.1016/j.coal.2018.10.006
  25. Zhao R., Tang Y., Wei S., Xu X., Shi X., Zhang G. Electrosynthesis of sodium hypochlorite in room temperature ionic liquids and in situ electrochemical epoxidation of olefins // Reaction Kinetics, Mechanisms and Catalysis. 2012. V. 106. P. 37-47. https://doi.org/10.1007/s11144-011-0403-3
  26. Subhana S., Ur Rahmana A., Yaseena M., Ur Rashid H., Ishaqa M., Sahibzadad M., Tongb Z. Ultra-fast and highly efficient catalytic oxidative desulfurization of dibenzothiophene at ambient temperature over low Mn loaded Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts using NaClO as oxidant // Fuel. 2019. V. 237. P. 793-805. https://doi.org/10.1016/j.fuel.2018.10.067
  27. Lia A., Songa H., Mengb H., Lub Y., Lia C. Ultrafast desulfurization of diesel oil with ionic liquid based PMoO catalysts and recyclable NaClO oxidant // Chem. Engineering Journal. 2020. V. 380. I. 122453. https://doi.org/10.1016/j.cej.2019.122453
  28. Gupta R.D., Raghav N. Differential effect of surfactants tetra-n-butyl ammonium bromide and N-Cetyl-N,N,N-trimethyl ammonium bromide bound to nano-cellulose on binding and sustained release of some non-steroidal anti-inflammatory drugs // Intern. J. of Biological Macromolecules. 2020. V. 164. P. 2745-2752. https://doi.org/10.1016/j.ijbiomac.2020.08.091
  29. Zhang L., Sun X., Song Y., Jiang X., Dong S., Wang E. Didodecyldimethylammonium bromide lipid bilayer-protected gold nanoparticles: synthesis, characterization, and self-assembly // Langmuir. 2006. V. 22. № 6. P. 2838-2843. https://doi.org/10.1021/la052822l
  30. Kumar D.R., Dhakal G., Nguyen V.Q., Lee J., Lee Y.R., Shim J-J. Ammonium heptamolybdate preloaded on flexible carbon-matrix film electrode for the electrochemical phosphate sensor in a river water sample // Microchemical J. 2021. V. 170. I. 106639. https://doi.org/10.1016/j.microc.2021.106639
  31. Кутлыева А.Г. Спектрофотометрическое определение бромид-ионов // Омега Сайнс-Внедрение Результатов Инновационных Разработок: Проблемы и Перспективы. 2016. Т. 3. C. 18-21. https://elibrary.ru/item.asp?id=27375444
  32. Houda S., Lancelot C., Blanchard P., Poinel L., Lamonier C. Oxidative desulfurization of heavy oils with high sulfur content: A review // Catalysts. 2018. V. 8. № 9. P. 344-369. https://doi.org/10.3390/catal8090344

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences