Thermal Decomposition of Synthetic Cage Hydrocarbons and Their Mixtures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of thermal decomposition of cage hydrocarbons, specifically exo-tricyclo[5.2.1.02.6]decane (exo-TCD) and exo,endo-tetracyclo[5.3.1.02,6.08,10]undecane (TCU-1, a monocyclo­propanated analog of exo-TCD), as well as their mixture (1 : 3 w/w) has been investigated. These compounds were compared in terms of thermal stability. The molar concentrations of the resultant gaseous products were determined experimentally. The equilibrium composition of the decomposition products was quantified, and the thermal effects of the thermal decomposition under thermodynamic and kinetic reaction control were identified.

About the authors

A. I. Kazakov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: akazakov@icp.ac.ru
125310, Moscow, Russia

L. S. Yanovskiy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Aviation Institute (National Research University); Moscow Power Engineering Institute (National Research University)

Email: petrochem@ips.ac.ru
142432, Chernogolovka, Russia; 125310, Moscow, Russia; 111250, Moscow, Russia

Yu. V. Tomilov

N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. A. Molokanov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Power Engineering Institute (National Research University)

Email: petrochem@ips.ac.ru
142432, Chernogolovka, Russia; 111250, Moscow, Russia

N. A. Plishkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
142432, Chernogolovka, Russia

D. B. Lempert

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
142432, Chernogolovka, Russia

N. I. Varlamova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: petrochem@ips.ac.ru
142432, Chernogolovka, Russia

References

  1. Shorunov S.V., Zarezin D.P., Samoilov V.O., Rudakova M.A., Borisov R.S., Maximov A.L., Bermeshev M.V. Synthesis and properties of high-energy-density hydrocarbons based on 5-vinyl-2-norbornene // Fuel. 2021. V. 283. № 118935. P. 1-7. https://doi.org/10.1016/j.fuel.2020.118935
  2. Яновский Л.С., Федоров Е.П., Варламова Н.И., Разносчиков В.В., Демская И.А., Томилов Ю.В., Меньщиков В.А. Проблемы применения высокоэнергоемких жидких горючих для летательных аппаратов с воздушно-реактивными двигателями // Авиационная промышленность. 2016. № 1. C. 60-66.
  3. Wang Y., Cheng Y., Li M., Jiang P.X., Zhu Y. Experimental and theoretical modeling of the effects of pressure and secondary reactions on pyrolysis of JP-10 at supercritical pressures // Fuel. 2021. V. 306. № 121737. P. 1-14. https://doi.org/10.1016/j.fuel.2021.121737
  4. Liu L., Zhang Q. Comparison of detonation characteristics in energy output of gaseous JP-10 and propylene oxide in air // Fuel. 2018. V. 232. P. 154-164. https://doi.org/10.1016/j.fuel.2018.05.149
  5. Park S.H., Kwon C.H., Kim J., Chun B.H., Kang J.W., Han J.S., Jeong B.H., Kim S.H. Thermal stability and isomerization mechanism of exo-tetrahydrodicyclopentadiene: Experimental study and molecular modeling // Ind. and Engin. Chem. Research. 2010. V. 49. № 18. P. 8319-8324. https://doi.org/10.1021/ie100065m
  6. Zhao L., Yang T., Kaiser R.I., Troy T.P., Xu B., Musahid A., Alarcon J.D., Mebel A.M., Zhang Y., Cao C., Zou J. A vacuum ultraviolet photoionization study on high-temperature decomposition of JP-10 (еxo-tetrahydrodicyclopentadiene) // Physical Chemistry Chemical Physics. 2017. V. 19. № 24. P. 1-5. https://doi.org/10.1039/C7CP01571B
  7. Xing Y., Li D., Xie W., Fang W., Guo Y., Lin R. Catalytic cracking of thricyclo[5.2.1.0(2.6)]decane over HZSM-5 molecular sieves // Fuel. 2010. V. 89. № 7. P. 1422-1428. https://doi.org/10.1016/j.fuel.2009.10.025
  8. Zhao Y., Masuoka T., Tsuruta T. Theoretical studies on transient pool boiling based on microlayer/macrolayer model (mechanism of transition from nonboiling regime to film boiling) // Transactions of the Japan Soc. of Mechanical Engineers Series B. 1997. V. 63. № 607. P. 964-969. https://doi.org/10.1299/kikaib.63.964
  9. Cooper M., Shepherd J.E. Experiments studying thermal cracking, catalytic cracking, and pre-mixed partial oxidation of JP-10 // 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2003. P. 1-20. https://doi.org/10.2514/6.2003-4687
  10. Keshavarz M.H., Zamani M., Atabaki F., Monjezi K.H. Theoretical investigation of phase transformations and molecular surface properties of polycyclic saturated hydrocarbon isomers of JP-10 // Computational and Theoretical Chemistry. 2013. V. 1006. P. 105-112. https://doi.org/10.1016/j.comptc.2012.11.019
  11. Li G., Zhang C., Wei H., Xie H., Guo Y., Fang W. Investigations on the thermal decomposition of JP-10/iso-octane binary mixtures // Fuel. 2016. V. 163. P. 148-156. https://doi.org/10.1016/j.fuel.2015.09.052
  12. Vandewiele N.M., Magoon G.R., Van Geem K.M., Reyniers M.F., Green W.H., Marin G.B. Experimental and modeling study on the thermal decomposition of jet propellant-10 // Energy and Fuels. 2014. V. 28. № 8. P. 4976-4985. https://doi.org/10.1021/ef500936m
  13. Yanovskiy L.S., Varlamova N.I., Kazakov A.I., Molokanov A.A., Plishkin N.A. Thermophysical properties of high energy synthetic hydrocarbons // J. of Physics: Conference. Series. 2019. V. 1385. № 012011. P. 1-7. https://doi.org/10.1088/1742-6596/1385/1/012011
  14. Tarasov G.A., Molokanov A.A., Plishkin N.A., Kazakov A.I., Varlamova N.I., Yanovskiy L.S., Larikova T.S. A complex of manometric methods for studying thermophysical, thermochemical properties and thermal stability of energy-intensive compounds // J. of Physics: Conference Series. 2021. V. 1891. № 012056. P. 1-8. https://doi.org/10.1088/1742-6596/1891/1/012056
  15. Nefedov O.M., Tomilov Yu.V., Kostitsyn A.B., Dzhemilev U.M., Dokichev V.A. Cyclopropanation of unsaturated compounds with diazomethane generated in situ. A new efficient and practical route to cyclopropane derivatives // ChemInform. 1992. V. 23. № 39. P. 13-15. https://doi.org/10.1002/chin.199239142
  16. Brotton S.J., Kaiser R.I. Effects of nitrogen dioxide on the oxidation of levitated exo-tetrahydrodicyclopentadiene (JP-10) droplets doped with aluminum nanoparticles // J. of Physical Chemistry A. 2021. V. 125. № 13. P. 2727-2742. https://doi.org/10.1021/acs.jpca.0c10155
  17. Zhang Q., Liu X. Explosion parameters of gaseous JP-10/air mixtures // Central European Journal of Energetic Materials. 2016. V. 13. № 1. P. 261-270. https://doi.org/10.22211/cejem/64982
  18. Smith N.K., Good W.D. Enthalpies of combustion of ramjet fuels // AIAA J. 1979. V. 17. № 8. P. 905-908. https://doi.org/10.2514/3.61244
  19. Rudakova M.A., Zarezin D.P., Shorunov S.V., Samoilov V.O., Ilyin S.O., Maximov A.L., Bermeshev M.V. High-energy-density liquid spiro-norbornanes from methylenenorbornane // Energy Fuels. 2022. V. 36. P. 11930-11939. https://doi.org/10.1021/acs.energyfuels.2c02220
  20. Oh C.H., Park D.I., Ryu J.H., Cho J.H., Han J.-S. Syntheses and characterization of cyclopropane-fused hydrocarbons as new high energetic materials // Bulletin of the Korean Chem. Soc. 2007. V. 28. № 2. P. 322-324. https://doi.org/10.5012/bkcs.2007.28.2.322
  21. Wei W., Baian P., Chi M., Chengxiang Sh., Lun P., Xiangwen Zh., Ji-Jun Z. Pd/C catalytic cyclopropanation of polycyclic olefins for synthesis of high-energy-density strained fuels // AIChE J. 2023. e18085. P. 1-11. https://doi.org/10.1002/aic.18085
  22. Кизин А.Н., Дворкин П.Л., Рыжова Г.Л., Лебедев Ю.А. Параметры для расчета стандартных энтальпий образования органических соединений в жидком состоянии // Изв. АН СССР. Сер. хим. 1986. № 2. C. 372-375.
  23. Trusov B.G. Program system terra for simulation phase and chemical equilibrium // Proc. The XIV Intern. symp. on chemical thermodynamics. St. Petersburg. Russia. 2002. P. 483-484.
  24. Эмунуэль Н.М., Кнорре Д.Г. Курс химической кинетики. М.: Высш. школа., 1984. 463 с.
  25. Солодова Н.Л., Абдулин А.И. Пиролиз углеводородного сырья. Казань: Казан. гос. технол. ун-т, 2007. 230 с.
  26. Магарил Р.З. Механизм и кинетика гомогенных термических превращений углеводородов. М.: Химия, 1970. 229 с.
  27. Туманов В.Е., Денисов Е.Т. Энергия напряжения цикла и ее влияние на прочность С-Н-связей в циклоалканах, циклоалкенах, циклоалкилароматических соединениях и О-Н-связей в циклокарбоновых кислотах // Бутлеровские сообщения. 2013. Т. 35. № 9. С. 139-144.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences