Effects of Grain Size on the Activity of H-MFI Zeolites in Liquid-Phase Condensation of Propene with Formaldehyde
- Authors: Bedenko S.P1, Mukusheva A.A2, Malyavin V.V.1, Dement'ev K.I.1
-
Affiliations:
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
- Gubkin Russian State University of Oil and Gas (National Research University)
- Issue: Vol 63, No 1 (2023)
- Pages: 32-41
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655634
- DOI: https://doi.org/10.31857/S0028242123010033
- EDN: https://elibrary.ru/TXBBOF
- ID: 655634
Cite item
Abstract
This study investigated the activity of H-MFI catalysts modified by the top-down method in the liquid-phase Prins reaction between propene and formaldehyde. The physicochemical characterization of the catalyst demonstrated that grinding the catalyst reduces the specific surface area and affects the micropore to mesopore ratio in the samples. Reducing the grain size was found to increase the initial substrate consumption rate and reduce the diffusion limitations in the system. At the same time, grinding shifts the product composition towards a higher proportion of byproducts. An assessment of the kinetic curves enabled the researchers to propose a number of equations that accurately reflect catalyst deactivation. Both the reaction rate and deactivation rate vary directly with the zeolite dispersion, while the deactivation of the sample is more sensitive to the grain size.
Keywords
About the authors
S. P Bedenko
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: bedenko@ips.ac.ru
119991, Moscow, Russia
A. A Mukusheva
Gubkin Russian State University of Oil and Gas (National Research University)
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
V. V. Malyavin
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
K. I. Dement'ev
Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia
References
- Платэ Н.А., Сливинский Е.В. Основы химии и технологии мономеров. М.: Наука, 2002. 696 с.
- Dahlmann M., Grub J. Butadiene. Weinheim: Wiley-VCH. 2011. 24 p.
- Production capacity of butadiene worldwide in 2018 and 2025 [Electronic resource] https://www.statista.com/statistics/1067436/global-butadiene-production-capacity/ (дата обращения 7.12.2021).
- White W.C. Butadiene production process overview // Chem. Biol. Interact. 2007. V. 166. № 1-3. P. 10-14. https://doi.org/10.1016/j.cbi.2007.01.009
- Беденко С.П., Дементьев К.И., Третьяков В.Ф., Максимов А.Л. Реакция Принса на гетерогенных катализаторах (Обзор) // Нефтехимия. 2020. Т. 60. № 4. С. 433-441. https://doi.org/10.31857/S0028242120040024
- Bedenko S.P., Dement'ev K.I., Tret'yakov V.F., Maksimov A.L. The Prins reaction over heterogeneous catalysts (a Review) // Petrol. Chemistry. 2020. V. 60. № 7. P. 723-730. https://doi.org/10.1134/S0965544120070026.
- Cavani F., Albonetti S., Basile F., Gandini A. Chemicals and fuels from bio-based building blocks. Weinheim: Wiley-VCH. 2016. 758 p.
- Zacharopoulou V., Lemonidou A.A. Olefins from biomass intermediates: A review // Catalysts. 2018. V. 8. № 1. P. 2. https://doi.org/10.3390/catal8010002
- Хаджиев С.Н., Магомедова М.В., Пересыпкина Е.Г. Механизм реакции синтеза олефинов из метанола и диметилового эфира на цеолитных катализаторах (обзор) // Нефтехимия. 2014. Т. 54. № 4. С. 243-269. https://doi.org/10.7868/S0028242114040054
- Khadzhiev S.N., Magomedova M.V., Peresypkina E.G. Mechanism of olefin synthesis from methanol and dimethyl ether over zeolite catalysts: A review // Petrol. Chemistry. 2014. V. 54. № 4. P. 245-269. https://doi.org/10.1134/S0965544114040057.
- Meunier N., Chauvy R., Mouhoubi S., Thomas D., De Weireld G. Alternative production of methanol from industrial CO2 // Renew. Energy. Elsevier Ltd. 2020. V. 146. P. 1192-1203. https://doi.org/10.1016/j.renene.2019.07.010.
- Sheldon R.A., Arends I., Hanefeld U. Green chemistry and catalysis. Weinheim: Wiley-VCH, 2007. 448 p.
- Dumitriu E., Gongescu D., Hulea V. Contribution to the study of isobutene condensation with formaldehyde catalyzed by zeolites // Stud. Surf. Sci. Catal. 1993. V. 78. P. 669-676.
- Dumitriu E., Hulea V., Hulea T., Chelaru C., Kaliaguine S. Selective synthesis of isoprene by Prins condensation using molecular sieves // Stud. Surf. Sci. Catal. 1994. V. 84. P. 1997-2004.
- Dumitriu E., Trong On D., Kaliaguine S. Isoprene by Prins condensation over acidic molecular sieves // J. Catal. 1997. V. 170. № 1. P. 150-160. http://doi.org/10.1006/jcat.1997.1745
- Dumitriu E., Hulea V., Fechete I., Catrinescu C., Auroux A., Lacaze J.-F., Guimon C. Prins condensation of isobutylene and formaldehyde over Fe-silicates of MFI structure // Appl. Catal. A Gen. 1999. V. 181. № 1. P. 15-28. http://doi.org/10.1016/S0926-860X(98)00366-4
- Vasiliadou E.S., Gould N.S., Lobo R.F. Zeolite-catalyzed formaldehyde-propylene Prins condensation // ChemCatChem. 2017. V. 9. № 23. P. 4417-4425. http://doi.org/10.1002/cctc.201701315
- Vasiliadou E.S., Li S., Caratzoulas S., Lobo R.F. Formaldehyde-isobutene Prins condensation over MFI-type zeolites // Catal. Sci. Technol. Royal Soc. of Chemistry. 2018. V. 8. № 22. P. 5794-5806. http://doi.org/10.1039/C8CY01667D
- Bedenko S.P., Kozhevnikov A.A., Demen'tev K.I., Tret'yakov V.F., Maximov A.L. The Prins condensation between i-butene and formaldehyde over modified BEA and MFI zeolites in liquid phase // Catal. Commun. 2020. V. 138. I. 105965. http://doi.org/10.1016/j.catcom.2020.105965
- Bedenko S.P., Dement'ev K.I., Tret'yakov V.F. Deactivation of zeolite catalysts in the Prins reaction between propene and formaldehyde in the liquid phase // Catalysts. 2021. V. 11. № 10. 1181. http://doi.org/10.3390/catal11101181
- Беденко С.П., Дементьев К.И., Третьяков В.Ф. Кинетика жидкофазной конденсации пропилена с формальдегидом в присутствии цеолитов H-MFI И H-BEA // Нефтехимия. 2022. Т. 62. № 5. С. 678-690. http://doi.org/10.31857/S0028242122050070
- Bedenko S.P., Dement'ev K.I., Tret'yakov V.F. Kinetics of liquid-phase condensation of propylene with formaldehyde over H-MFI and H-BEA zeolites // Petrol. Chemistry. 2022. V. 62. № 7. P. 768-778. http://doi.org/10.1134/S0965544122050073.
- Eckert C.A., Knutson B.L., Debenedetti P.G. Supercritical fluids as solvents for chemical and materials processing // Nature. 1996. V. 383. № 6598. P. 313-318. http://doi.org/10.1038/383313a0
- Bohács K., Kristály F., Mucsi G. The influence of mechanical activation on the nanostructure of zeolite // J. Mater. Sci. 2018. V. 53. № 19. P. 13779-13789. http://doi.org/10.1007/s10853-018-2502-2
- Ivanova I.I., Knyazeva E.E. Micro-mesoporous materials obtained by zeolite recrystallization: Synthesis, characterization and catalytic applications // Chem. Soc. Rev. 2013. V. 42. № 9. P. 3671-3688. http://doi.org/10.1039/c2cs35341e
- Кузнецов П.С., Дементьев К.И., Паланкоев Т.А., Калмыкова Д.С., Малявин В.В., Сагарадзе А.Д., Максимов А.Л. Синтез высокоактивных наноцеолитов с использованием методов механического размола, перекристаллизации и деалюминирования // Наногетерогенный катализ. 2021. Т. 6. № 1. С. 3-16. http://doi.org/10.1134/S2414215821010068
- Kuznetsov P.S., Dementiev K.I., Palankoev T.A., Kalmykova D.S., Malyavin V.V., Sagaradze A.D., Maximov A.L. Synthesis of highly active nanozeolites using methods of mechanical milling, recrystallization, and dealumination (A review) // Petrol. Chemistry. 2021. V. 61. № 6. P. 649-662. http://doi.org/10.1134/S0965544121050182.
- Родионова Л.И., Князева Е.Е., Коннов С.В., Иванова И.И. Перспективы применения наноразмерных цеолитов в нефтехимии: синтез и каталитические свойства (Обзор) // Нефтехимия. 2019. Т. 59. № 3. С. 333-349. http://doi.org/10.1134/S0028242119030134
- Rodionova L.I., Knyazeva E.E., Konnov S.V., Ivanova I.I. Application of nanosized zeolites in petroleum chemistry: synthesis and catalytic properties (Review) // Petrol. Chemistry. 2019. V. 59. № 4. P. 455-470. http://doi.org/10.1134/S0965544119040133.
- Palčić A., Catizzone E. Application of nanosized zeolites in methanol conversion processes: A short review // Curr. Opin. Green Sustain. Chem. 2021. V. 27. P. 1-8. http://doi.org/10.1016/j.cogsc.2020.100393
- Дементьев К.И., Паланкоев Т.А., Кузнецов П.С., Абрамова Д.С., Ромазанова Д.А., Махин Д.Ю., Максимов А.Л. Влияние размерного фактора на активность цеолитов в реакции жидкофазного крекинга углеводородов // Нефтехимия. 2020. Т. 60. № 1. С. 34-43. http://doi.org/10.31857/S0028242120010062
- Dement'ev K.I., Palankoev T.A., Kuznetsov P.S., Abramova D.S., Romazanova D.A., Makhin D.Yu., Maksimov A.L. Effect of size factor on the activity of zeolites in the liquid-phase cracking of hydrocarbons // Petrol. Chemistry. 2020. V. 60. № 1. P. 30-38. http://doi.org/10.1134/S0965544120010065.
- Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure Appl. Chem. 2015. V. 87. № 9-10. P. 1051-1069. http://doi.org/10.1515/pac-2014-1117
- Akçay K., Sirkecioǧlu A., Tatlier M., Savaşçi Ö.T., Erdem-Şenatalar A. Wet ball milling of zeolite HY // Powder Technol. 2004. V. 142. № 2-3. P. 121-128. http://doi.org/10.1016/j.powtec.2004.03.012
- Wakihara T., Sato K., Inagaki S., Tatami J., Komeya K., Meguro T., Kubota Y. Fabrication of fine zeolite with improved catalytic properties by bead milling and alkali treatment // ACS Appl. Mater. Interfaces. 2010. V. 2. № 10. P. 2715-2718. http://doi.org/10.1021/am100642w
- Wakihara T., Ichikawa R., Tatami J., Endo A., Yoshida K., Sasaki Y., Komeya K., Meguro T. Bead-milling and postmilling recrystallization: An organic template-free methodology for the production of nano-zeolites // Cryst. Growth Des. 2011. V. 11. № 4. P. 955-958. http://doi.org/10.1021/cg2001656
- Saepurahman H.R. Insight into ball milling for size reduction and nanoparticles production of H-Y zeolite // Mater. Chem. Phys. Elsevier, 2018. V. 220. № 7. P. 322-330. http://doi.org/10.1016/j.matchemphys.2018.08.080
- Groen J.C., Peffer L.A.A., Pérez-Ramírez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis // Microporous Mesoporous Mater. 2003. V. 60. № 1-3. P. 1-17. http://doi.org/10.1016/S1387-1811(03)00339-1
- Groen J.C., Pérez-Ramírez J. Critical appraisal of mesopore characterization by adsorption analysis // Appl. Catal. A: Gen. 2004. Vol. 268. P. 121-125.
- Smit B., Maesen T.L.M. Towards a molecular understanding of shape selectivity // Nature. 2008. V. 451. № 7179. P. 671-678. http://doi.org/10.1038/nature06552
- Wojciechowski B.W. The Kinetic foundations and the practical application of the time on stream theory of catalyst decay // Catal. Rev. 1974. V. 9. № 1. P. 79-113.
Supplementary files
