Kinetic Model and Mechanism of Heterogeneous Hydrogenation of Strained Polycyclic Compounds Derived from 5-Vinyl-2-norbornene
- Authors: Zamalyutin V.V1, Katsman E.A.1, Flid V.R.1
-
Affiliations:
- Russian University of Technology, Lomonosov Institute of Fine Chemical Technologies
- Issue: Vol 63, No 1 (2023)
- Pages: 42-55
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655635
- DOI: https://doi.org/10.31857/S0028242123010045
- EDN: https://elibrary.ru/TXBPYV
- ID: 655635
Cite item
Abstract
The main pathways of liquid-phase hydrogenation of 5-ethenylbicyclo[2.2.1]hept-2-ene (5-vinyl-2-norbornene, VNE) in the presence of PK-25 palladium catalyst (Pd/γ-Al2O3, 0.25% Pd) were studied. All the reaction products were identified, and the material balance was examined. The effect of the prevalent adsorption of the norbornene double bond on the Pd active site (AS) was confirmed. The parallel-consecutive scheme of the process mechanism, based on the set of experimental and theoretical data, was suggested. It involves the successive substrate hydrogenation and significant role of the isomerization of the vinyl group into the ethylidene group in intermediates on AS in a hydrogen atmosphere. The reaction is zero-order in a wide interval of initial VNE concentrations. An adequate kinetic model of the process, based on the Langmuir–Hinshelwood approach and the concept of multiple adsorption of substrates on one AS, was developed. Five steps, including two parallel steps, significantly contribute to the reaction rate. Their rate constants and the adsorption constants of AS complexes with unsaturated compounds were estimated.
About the authors
V. V Zamalyutin
Russian University of Technology, Lomonosov Institute of Fine Chemical Technologies
Email: zamalyutin@mail.ru
119571, Moscow, Russia
E. A. Katsman
Russian University of Technology, Lomonosov Institute of Fine Chemical Technologies
Email: petrochem@ips.ac.ru
119571, Moscow, Russia
V. R. Flid
Russian University of Technology, Lomonosov Institute of Fine Chemical Technologies
Author for correspondence.
Email: vitaly-flid@yandex.ru
119571, Moscow, Russia
References
- Cai Y., Zheng J., Hu Y., Wei J., Fan H. The preparation of polyolefin elastomer functionalized with polysiloxane and its effect in ethylene-propylene-diene monomer/silicon rubber blends // Eur. Polym. J. 2022. V. 177. P. 111468. https://doi.org/10.1016/j.eurpolymj.2022.111468
- Fein K., Bousfield D.W., Gramlich W.M. Thiol-norbornene reactions to improve natural rubber dispersion in cellulose nanofiber coatings // Carbohyd. Polym. 2020. V. 250. P. 117001. https://doi.org/10.1016/j.carbpol.2020.117001
- Ravishankar P.S. Treatise on EPDM // Rubber Chem. Technol. 2012. V. 85. P. 327-349. https://doi.org/10.5254/rct.12.87993
- Флид В.Р., Грингольц М.Л., Шамсиев Р.С., Финкельштейн Е.Ш. Норборнен, норборнадиен и их производные - перспективные полупродукты для органического синтеза и получения полимерных материалов // Усп. хим. 2018. Т. 87. С. 1169-1205 https://doi.org/10.1070/RCR4834
- Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.Sh. Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials // Russ. Chem. Rev. 2018. V. 87. P. 1169-1205. https://doi.org/10.1070/RCR4834.
- Kong P., Drechsler S., Balog S., Schrettl S., Weder C., Kilbinger A.F.M. Synthesis and properties of poly(norbornene)s with lateral aramid groups // Polym. Chem. 2019. V. 10. P. 2057-2063. https://doi.org/10.1039/C9PY00187E
- Roenko A.V., Nikiforov R.Y., Gringolts M.L., Belov N.A., Denisova Y.I., Shandryuk G.A., Bondarenko G.N., Kudryavtsev Y.V., Finkelshtein E.S. Olefin-metathesis-derived norbornene-ethylene-vinyl acetate/vinyl alcohol multiblock copolymers: impact of the copolymer structure on the gas permeation properties // Polymers. 2022. V. 14. P. 444. https://doi.org/10.3390/polym14030444
- Thomas J., Bouscher R.F., Nwosu J., Soucek M.D. Sustainable thermosets and composites based on the epoxides of norbornylized seed oils and biomass fillers // ACS Sustainable Chem. Eng. 2022. V. 10. P. 12342-12354. https://doi.org/10.1021/acssuschemeng.2c03434
- Belov N.A., Gringolts, M.L., Morontsev A.A. Starannikova L.E., Yampolskii Yu.P., Finkelstein E.Sh. Gas-transport properties of epoxidated metathesis polynorbornenes // Polym. Sci. Ser. B. 2017. V. 59. P. 560-569. https://doi.org/10.1134/S1560090417050025
- Vintila I.S., Iovu H., Alcea A., Cucuruz A., Mandoc A.C., Vasile B.S. The synthetization and analysis of dicyclopentadiene and ethylidene-norbornene microcapsule systems // Polymers. 2020. V. 12. P. 1052. https://doi.org/10.3390/polym12051052
- Morontsev A.A., Denisova Yu.I., Gringolts M.L., Filatova M.P., Shandryuk G.A., Finkelshtein E.Sh., Kudryavtsev Ya.V. Epoxidation of multiblock copolymers of norbornene and cyclooctene // Polym. Sci. Ser. B. 2018. V. 60. P. 688-698. https://doi.org/10.1134/S1560090418050111
- Li G., Shen R., Hu Sh., Wang B., Algadi H., Wang Ch. Norbornene-based acid-base blended polymer membranes with low ion exchange capacity for proton exchange membrane fuel cell // Adv. Compos Hybrid Mater. 2022. V. 5. P. 2131-2137. https://doi.org/10.1007/s42114-022-00559-3
- Le D., Samart Ch., Lee J.-T., Nomura K., Kongparakul S., Kiatkamjornwong S. Norbornene-functionalized plant oils for biobased thermoset films and binders of silicon-graphite composite electrodes // ACS Omega. 2020. V. 5. P. 29678-29687. https://doi.org/10.1021/acsomega.0c02645
- Sparaco R., Kędzierska E., Kaczor A.A., Bielenica A., Magli E., Severino B., Corvino A., Gibuła-Tarłowska E., Kotlińska J.H., Andreozzi G., Luciano P., Perissutti E., Frecentese F., Casertano M., Leśniak A., Bujalska-Zadrożny M., Oziębło M., Capasso R, Santagada V., Caliendo G. Fiorino F. Synthesis, docking studies and pharmacological evaluation of serotoninergic ligands containing a 5-norbornene-2-carboxamide nucleus // Molecules. 2022. V. 27. P. 6492. https://doi.org/10.3390/molecules27196492
- Çapan İ., Servi S., Dalkiliç S., Dalkiliç L.K. Synthesis and anticancer evaluation of benzimidazole derivatives having norbornene/dibenzobarrelene skeletons and different functional groups // ChemistrySelect. 2020. V. 5. P. 14393-14398. https://doi.org/10.1002/slct.202004034
- Fiorino F., Perissutti E., Severino B., Santagada V., Cirillo D., Terracciano S., Massarelli P., Bruni G., Collavoli E., Renner C., Caliendo G. New 5-hydroxytryptamine(1А) receptor ligands containing a norbornene nucleus: synthesis and in vitro pharmacological evaluation // J. Med. Chem. 2005. V. 48. № 17. P. 5495-5503. https://doi.org/10.1021/jm050246k
- Rao V.N., Mane S.R., Abhinoy K., Sarma J.D., Shunmugam R. Norbornene derived doxorubicin copolymers as drug carriers with pH responsive hydrazone linker // Biomacromolecules. 2012. V. 13. № 1. P. 221-230. https://doi.org/10.1021/bm201478k
- Ulla B. S., Binderup M.-L., Bolognesi C., Brimer L., Castle L., Di Domenico A., Engel K.-H., Franz R., Gontard N., Gürtler R., Husøy T., Jany K.-D., Kolf-Clauw M., Leclercq C., Lhuguenot J.-C., Mennes W., Milana M. R., Poças M. de F., Pratt I., Svensson K., Toldrá F., Wölfle D. Scientific оpinion on the safety assessment of the substance, 5-norbornene-2,3dicarboxylic anhydride, CAS No 826-62-0, for use in food contact materials // EFSA J. 2014. V. 12. № 6. P. 3714. https://doi.org/10.2903/j.efsa.2014.3714
- Shorunov S.V., Piskunova E.S., Petrov V.A., Bykov V.I., Bermeshev M.V. Selective hydrogenation of 5-vinyl-2-norbornene to 2-vinylnorbornane // Petrol. Chemistry. 2018. V. 58. P. 1056-1063. https://doi.org/10.1134/S0965544118120125
- Шорунов С.В., Пискунова Е.С., Петров В.А., Быков В.И., Бермешев М.В. Селективное гидрирование 5-винил-2-норборнена до 2-винилнорборнана // Нефтехимия. 2018. Т. 58. С. 712-719. https://doi.org/10.1134/S0028242118060126.
- Shorunov S.V., Zarezin D.P., Samoilov V.O., Rudakova M.A., Borisov R.S., Maximov A.L., Bermeshev M.V. Synthesis and properties of high-energy-density hydrocarbons based on 5-vinyl-2-norbornene // Fuel. 2021. V. 283. P. 118935. https://doi.org/10.1016/j.fuel.2020.118935.
- Zamalyutin V.V., Ryabov A.V., Nichugovskii A.I., Skryabina A.Yu., Tkachenko O.Yu., Flid V.R. Regularities of the heterogeneous catalytic hydrogenation of 5-vinyl-2-norbornene // Russ. Chem. Bull. 2022. V. 71. P. 70-75
- Замалютин В.В., Рябов А.В., Ничуговский А.И., Скрябина А.Ю., Ткаченко О.Ю., Флид В.Р. Особенности гетерогенно-каталитического гидрирования 5-винил-2-норборнена // Изв. АН. Сер. хим. 2022. С. 70-75. https://doi.org/10.1007/s11172-022-3378-5.
- Zamalyutin V.V., Ryabov A.V., Solomakha E.A., Katsman E.A., Flid V.R., Tkachenko O.Yu., Shpinyova M.A. Liquid-phase heterogeneous hydrogenation of dicyclopentadiene // Russ. Chem. Bull. 2022. V. 71. P. 1204-1208
- Замалютин В.В., Рябов А.В., Соломаха Е.А., Кацман Е.А., Флид В.Р., Ткаченко О.Ю., Шпынева М.А. Жидкофазное гетерогенное гидрирование дициклопентадиена // Изв. АН. Сер. хим. 2022. Т. 71. С. 1204-1208. https://doi.org/10.1007/s11172-022-3521-3.
- Zamalyutin V.V., Shamsiev R.S., Flid V.R. Mechanism of catalytic migration of the double bond in 2-vinylnorbonanes // Russ. Chem. Bull. 2022. P. 2142-2148
- Замалютин В.В., Шамсиев Р.С., Флид В.Р. Механизм каталитической миграции двойной связи в 2-винилнорборнанах // Изв. АН. Сер. хим. 2022. № 10. С. 2142-2148.
- Zamalyutin V.V., Katsman E.A., Danyushevsky V.Y., Flid V.R., Podol'skii V.V., Ryabov A.V. Specific features of the catalytic hydrogenation of the norbornadiene-based carbocyclic compounds // Russ. J. Coord. Chem. 2021. V. 47. № 10. P. 695-701
- Замалютин В.В., Кацман Е А., Данюшевский В.Я., Флид В.Р., Подольский В.В., Рябов А.В. Особенности каталитического гидрирования карбоциклических соединений на основе норборнадиена // Коорд. химия. 2021. Т. 47. С. 628-634. https://doi.org/10.31857/S0132344X21100091.
- Zamalyutin V.V., Katsman E.A., Ryabov A.V., Skryabina A.Y., Shpinyova M.A., Danyushevsky V.Y., Flid V.R. Kinetic model and mechanism of hydrogenation of unsaturated carbocyclic compounds based on norbornadiene // Kinet. Catal. 2022. V. 63. № 2. P. 234-242
- Замалютин В.В., Кацман Е.А., Рябов А.В., Скрябина А.Ю., Шпынева М.А., Данюшевский В.Я., Флид В.Р. Кинетическая модель и механизм гидрирования ненасыщенных карбоциклических соединений на основе норборнадиена // Кинетика и катализ. 2022. Т. 63. №2. С. 267-276. https://doi.org/10.31857/S0453881122020150.
- Осокин Ю.Г., Михайлов В.А., Зубович И.А., Фельдблюм В.Ш. // Доклады АН СССР. 1975. Т. 220. № 4. С. 851-853.
- Bermeshev M.V., Pozharskaya N.A., Antonova T.N., Shangareev D.R., Danilova A.S. Selective catalytic hydrogenation of alicyclic dienes with hydrogen in a liquid phase // Petrol. Chemistry. 2018. V. 58. № 10. P. 869-875. https://doi.org/10.1134/S0028242118050039
- Бермешев М.В., Антонова Т.Н., Шангареев Д.Р., Данилова А.С., Пожарская Н.А. // Нефтехимия. 2018. Т. 58. С. 580-587.
- Ushakov N.V. Selective hydrogenation of 5-vinylnorborn-2-ene and other methods for the synthesis of 2-vinylnorbornane // Russ. J. Appl. Chem. 2018. V. 91. P. 728-745. https://doi.org/10.1134/S1070427218050026
- Ушаков Н.В. Селективное гидрирование 5-винилнорборн-2-ена и другие методы синтеза 2-винилнорборнана (обзор) // Журн. прикл. химии. 2018. Т. 91. №5. С. 631-650.
- Vereshchagina N.V., Antonova T.N., Il'In A.A., Chirkova Z.V. Feature of dicyclopentene formation during hydrogenation of dicyclopentadiene // Petrol. Chemistry. 2016. V. 56. № 1. P. 38-43. https://doi.org/10.1134/S0965544115080198
- Верещагина Н.В., Антонова Т.Н., Ильин А.А., Чиркова Ж.В. Закономерности образования дициклопентена в процессе гидрирования дициклопентадиена // Нефтехимия. 2016. Т. 56. № 1. С. 46-51. https://doi.org/10.7868/S0028242115060192.
- Куттубаев С.Н., Рахимов М.Н., Павлов М.Л., Басимова Р.А., Кутепов Б.И. Исследование эффективности очистки этан-этиленовой фракции пиролиза от ацетиленовых соединений на различных катализаторах // Нефтегазовое дело. 2012. № 4. С. 165-178.
- Urmès С., Schweitzer J.-M., Cabiac A., Schuurman Y. Kinetic study of the selective hydrogenation of acetylene over supported palladium under tail-end conditions // Catalysts. 2019. V. 9. P. 180. https://doi.org/10.3390/catal9020180.
- Molero H., Bartlett B.F., Tysoe W.T. The hydrogenation of acetylene catalyzed by palladium: hydrogen pressure dependence // J. Catal. 1999. V. 181. P. 49-56.
- Borodzinski A., Bond G.C. selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts, Part 2: Steady-state kinetics and effects of palladium particle size, carbon monoxide, and promoters // Catal. Rev. 2008. V. 50. P. 379-469. https://doi.org/10.1080/01614940802142102
- Al-Wadhaf H.A., Karpov V.M., Katsman E.A. Activity and selectivity of carbon supported palladium catalysts prepared from bis(η3-allyl)palladium complexes in phenylacetylene hydrogenation // Catal. Commun. 2018. V. 116. P. 67-71. https://doi.org/10.1016/j.catcom.2018.08.010.
- Berenblyum A.S., Katsman E.A., Al-Wadhaf H.A. Supported palladium nanomaterials as catalysts for petroleum chemistry: 2. Kinetics and specific features of the mechanism of selective hydrogenation of phenylacetylene in the presence of carbon-supported palladium nanocatalysts // Petrol. Chemistry. 2015. V. 55. № 2. P. 118-126. https://doi.org/10.1134/S0965544115020048
- Беренблюм А.С., АльВадхав Х.А., Кацман Е.А. Нанесенные палладиевые наноматериалы как катализаторы для нефтехимии: 2. Кинетика и особенности механизма селективного гидрирования фенилацетилена в присутствии палладиевого нанокатализатора на угле // Нефтехимия. 2015. Т. 55. № 2. C. 125-133.
Supplementary files
