Experimental and Kinetic Modeling of n-Heptane Hydroconversion over Mesoporous Pt/MSU Catalyst. Effect of Site Activity and Residence Time
- Authors: Mohammad J.A.1, Touba H.2
-
Affiliations:
- Department of Chemical Engineering, Amirkabir University of Technology
- Department of Basic Science, Petroleum University of Technology
- Issue: Vol 63, No 1 (2023)
- Pages: 56-66
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655636
- DOI: https://doi.org/10.31857/S0028242123010057
- EDN: https://elibrary.ru/UBPVIF
- ID: 655636
Cite item
Abstract
A zeolite-based mesostructured (MSU) molecular sieve material was synthesized, characterized, and used in the preparation of Pt (0.6 and 1 wt %) supported catalysts for hydroconversion of n-heptane under the experimental conditions of 300–450°C and 760 mmHg. Samples were characterized by X-ray diffraction (XRD), N2 adsorption-desorption isotherm, and NH3-TPD (temperature-programmed deposition) techniques. The activity test shows that catalysts have good activity and selectivity for isomerization reaction. Also, increasing metal sites, selectivity tends to the production of aromatization reaction in the heterogeneous catalytic process. Based on experimental results, a kinetic model of this reaction was carried out. Based on other publications and combining the examined features, a network of the reaction was proposed. It can be claimed that the results of converging the feed from the kinetic model are in good agreement with the experimental results. Some of the superiorities of this model compared to other models are the determination of kinetics parameters, source of isomers, aromatic, and cracked products distinctly with emphasis on the effect of site activity and residence time over metal-acid sites.
Keywords
About the authors
Javad Asadinasab Mohammad
Department of Chemical Engineering, Amirkabir University of Technology
Email: petrochem@ips.ac.ru
15914, Tehran, Iran
Hamoule Touba
Department of Basic Science, Petroleum University of Technology
Author for correspondence.
Email: t.hamoule@put.ac.ir
63431, Ahvaz, Iran
References
- van de Runstraat A., Kamp J.A., Stobbelaar P.J., van Grondelle J., Krijnen S., van Santen R.A. Kinetics of hydro-isomerization of n-hexane over platinum containing zeolites // J. Catal. 1997. V. 171. № 1. P. 77-84. https://doi.org/10.1006/jcat.1997.1779
- Zhang A., Nakamura I., Aimoto K., Fujimoto K. Isomerization of n-pentane and other light hydrocarbons on hybrid catalyst. Effect of hydrogen spillover // Ind. Eng. Chem. Res. 1995. V. 34. P. 1074-1080. https://doi.org/10.1021/ie00043a008
- Mishra G.S., Machado K., Kumar A. Highly selective n-alkanes oxidation to ketones with molecular oxygen catalyzed by SBA-15 supported rhenium catalysts // J. Ind. Eng. Chem. 2014. V. 20. P. 2228-2235. https://doi.org/10.1016/j.jiec.2013.09.055
- Hajimirzaee S., Mehr A.S., Ghavipour M., Vatankhah M., Behbahani R.M. Effect of metal loading on catalytic activity and selectivity of ZSM-5 zeolite catalyst in conversion of methanol to olefins and aromatics // Petrol. Sci. Technol. 2017. V. 35. № 3. P. 279-286. https://doi.org/10.1080/10916466.2016.1258413
- Kluksdahl H.E. Reforming a sulfur-free naphtha with a platinum-rhenium catalyst. Patent US3415737A, 1968.
- Zhua L., DePristo A.E. Microstructures of bimetallic clusters: Bond order metal simulator for disordered alloys // J. Catal. 1969. V. 49. P. 400-407. https://doi.org/10.1006/jcat.1997.1586
- Qi W., Ran J., Zhang Z., Niu J., Zhang P., Fu L., Hu B., Li Q. Methane combustion reactivity during the metal→metallic oxide transformation of Pd-Pt catalysts: Effect of oxygen pressure // Appl. Surf. Sci. 2018. V. 435. P. 776-785. https://doi.org/10.1016/j.apsusc.2017.11.178
- Liu H., Lei G.D., Sachtler W.M.H. Pentane and butane isomerization over platinum promoted sulfated zirconia catalysts // Appl. Catal. A: Gen. 1998. V. 146. P. 165-180. https://doi.org/10.1016/0926-860X(96)00031-2
- Balakrishnan J.H., Schwank J. A chemisorption and XPS study of bimetallic Pt-Sn/Al2O3 catalysts // J. Catal. 1991. V. 127. P. 287-306. https://doi.org/10.1016/0021-9517(91)90227-U
- Ponec V., Bond G.C. Reactions of alkanes and reforming of naphtha // Stud. Surf. Sci. Catal. 1995. V. 95. № C. P. 583-677.
- Barbiera J., Marécot P., Del Angel G., Bosch P., Boitiaux J.P., Didillon B., Dominguez J.M., Schiftef I., Espmosa G. Preparation of platinum-gold bimetallic catalysts by redox reactions // Appl. Catal. A: Gen. 1994. V. 116. № 1-2. P. 179-186. https://doi.org/10.1016/0926-860X(94)80288-2
- Siegmund Greulich-Weber H.M. Ordered Porous Nanostructures and Applications, ed. by R. Wehrspohn. - New York: Kluwer Academic Plenum, 2005. P. 350-351.
- Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D. Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores // Science. 1998. V. 279. № 5350. P. 548-552. https://doi.org/10.1126/science.279.5350.548
- Sachtler W.M.H., Liu H., Lei G.D. Selectivity and rate of activity decline of bimetallic catalysts. The viscosity of concentrated suspensions and solutions // Appl. Catal. A: Gen. 1976. V. 14. P. 1-12.
- Bagshaw S.A., Kemmitt T., Milestone N.B. Mesoporous [M]-MSU-x metallo-silicate catalysts by non-ionic polyethylene oxide surfactant templating1: Acid [N0(N+)X-I+] and base (N0M+I-) catalysed pathways // Microporous Mesoporous Mater. 1998. V. 22. P. 419-433. https://doi.org/10.1016/S1387-1811(98)00108-5
- Liu L., Li H., Zhang Y. Effect of synthesis parameters on the chromium content and catalytic activities of mesoporous Cr-MSU-x prepared under acidic conditions // J. Phys. Chem. B. 2006. V. 110. P. 15478-15485. https://doi.org/10.1021/jp061875o
- von Aretin T., Hinrichsen O. Single-event kinetic model for cracking and isomerization of 1-hexene on ZSM-5 // Ind. Eng. Chem. Res. 2014. V. 53. № 50. P. 19460-19470. https://doi.org/10.1021/ie503628p
- von Artein T., Schallmoser S., Standle S., Tonigold M., Lercher J.A., Hinrichsen O. Single event kinetic model for 1-pentane cracking on ZSM-5 // Ind. Eng. Chem. Res. 2015. V. 54. № 47. P. 11792-11803. https://doi.org/10.1021/acs.iecr.5b02629
- Ying L., Zhu J., Cheng Y., Wang L., Li, X. Kinetic modeling of C2-C7 olefins interconversion over ZSM-5 catalyst // J. Ind. Eng. Chem. 2016. V. 33. P. 80-90. https://doi.org/10.1016/j.jiec.2015.09.021
- Huang X., Aihemaitijiang D., Xiao W.D. Reaction pathway and kinetics of C3-C7 olefin transformation over high-silicon HZSM-5 zeolite at 400-490°C // Chem. Eng. J. 2015. V. 280. P. 222-232. https://doi.org/10.1016/j.cej.2015.05.124
- Liu Y., Zhang W., Pinnavaia T.J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds // J. Am. Chem. Soc. 2000. V. 122. № 36. P. 8791-8792. https://doi.org/10.1021/ja001615z
- Triantafyllidis K.S., Iliopoulou E.F., Antonakou E.V., Lappas A.A., Wang H., Pinnavaia T.J. Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis // Microporous Mesoporous Mater. 2007. V. 2007. P. 132-139. https://doi.org/10.1016/j.micromeso.2006.09.019
- Gagea B.C., Lorgouilloux Y., Altintas Y., Jacobs P.A., Martens J.A. Bifunctional conversion of n-decane over HPW heteropoly acid incorporated into SBA-15 during synthesis // J. Catal. 2009. V. 265. P. 99-108. https://doi.org/10.1016/j.jcat.2009.04.017
- Maxwell I.E. Zeolites catalysis in hydroprocessing technology // Catal. Today. 1987. V. 1. № 4. Р. 385-413. https://doi.org/10.1016/0920-5861(87)80006-8
- Vazquez M.I., Escardino A., Corma A. Activity and selectivity of nickel-molybdenum/HY ultrastable zeolites for hydroisomerization and hydrocracking of alkanes // Ind. Eng. Chem. Res. 1987. V. 26. № 8. P. 1495-1500. https://doi.org/10.1021/ie00068a001
- Patrigeon A., Benazzi E., Travers Ch., Bernhard J.Y. Influence of the zeolite structure and acidity on the hydroisomerization of n- heptane // Catal. Today. 2001. V. 65. № 2. P. 149-155. https://doi.org/10.1016/S0920-5861(00)00558-7
- Mokaya R., Jones W., Moreno S., Poncelet G. n-heptane hydroconversion over aluminosilicate mesoporous molecular sieves // Catal. Letters. 1997. V. 49. P. 87-94. https://doi.org/10.1023/A:1019084617120
- Wang Z., Guo Y., Lin R. Effect of triethylamine on the cracking of heptane under a supercritical condition and the kinetic study on the cracking of heptane // Energ. Convers. Manage. 2008. V. 49. № 8. P. 2095-2099. https://doi.org/10.1016/j.enconman.2008.02.018
- Maloncy M.L., Maschmeyer T., Jansen J.C. Technical and economical evaluation of zeolite membrane based heptane hydroisomerization process // Chem. Eng. J. 2005. V. 106. № 3. P. 187-195. https://doi.org/10.1016/J.CEJ.2004.11.011
- Kadiev K.M., Maximov A.L., Kadieva M.K. The effect of MoS2 active site dispersion on suppression of polycondensation reactions during heavy oil hydroconversion // Catalysts. 2021. V. 11. № 6. P. 676. https://doi.org/10.3390/catal11060676
- van der Wal L.I., Oenema J., Smulders L.C.J., Samplonius N.J., Nandpersad K.R., Zečević J., de Jong K.P. Control and impact of metal loading heterogeneities at the nanoscale on the performance of Pt/zeolite Y catalysts for alkane hydroconversion // ACS Catal. 2021. V. 11. P. 3842-3855. https://doi.org/10.1021/acscatal.1c00211
- Gutierrez-Acebo E., Leroux C., Chizallet C., Schuurman Y., Bouchy C. Metal/acid bifunctional catalysis and intimacy criterion for ethylcyclohexane hydroconversion: When proximity does not matter // ACS Catal. 2018. V. 8. P. 6035-6046. https://doi.org/10.1021/acscatal.8b00633
Supplementary files
