Cobalt–Samarium Oxide Composite as a Novel High-Performance Catalyst for Partial Oxidation and Dry Reforming of Methane into Synthesis Gas

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper describes a novel high-performance catalyst that was developed for partial oxidation of methane (POM) and dry reforming of methane (DRM) into synthesis gas. The catalyst is based on samarium cobaltite dispersed in a samarium oxide matrix. Unlike its known counterparts based on samarium cobaltate, the novel catalyst is resistant to carbonization and contains active sites that exhibit higher syngas productivity.

About the authors

A. S. Loktev

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Gubkin Russian State University of Oil and Gas (National Research University)

Email: al57@rambler.ru
119991, Moscow, Russia; 119991, Moscow, Russia

V. A. Arkhipova

Gubkin Russian State University of Oil and Gas (National Research University)

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

M. A. Bykov

Faculty of Chemistry, Lomonosov Moscow State University

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. A. Sadovnikov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. G. Dedov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; Gubkin Russian State University of Oil and Gas (National Research University)

Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia

References

  1. Rostrup-Nielsen J.R. Syngas in perspective // Catalysis Today. 2002. V. 71. № 3-4. P. 243-247. https://doi.org/10.1016/S0920-5861(01)00454-0.
  2. Liu K., Song C., Subramani V. Hydrogen and syngas production and purification technologies. Wiley-Interscience, 2009. 533 р.
  3. Hu Y.H., Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming // Advances in Catalysis. 2004. V. 48. P. 297-345. https://doi.org/10.1016/S0360-0564(04)48004-3
  4. Enger B.C., Lødeng R., Holmen A. A Review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts // Applied Catalysis A: General. 2008. V. 346. № 1-2. P. 1-27. https://doi.org/10.1016/j.apcata.2008.05.018
  5. Moiseev I.I., Loktev A.S., Shlyakhtin O.A., Mazo G.N., Dedov A.G. New approaches to the design of nickel, cobalt, and nickel-cobalt catalysts for partial oxidation and dry reforming of methane to synthesis gas. // Petrol. Chemistry. 2019. V. 59. № 1. P. S1-S20. https://doi.org/10.1134/S0965544119130115
  6. Моисеев И.И., Локтев А.С., Шляхтин О.А., Мазо Г.Н., Дедов А.Г. Новые подходы к созданию никелевых, кобальтовых и никель-кобальтовых катализаторов кислородной и углекислотной конверсии метана в синтез-газ. // Нефтехимия. 2019. Т. 59. № 8. С. 833-859. https://doi.org/10.53392/00282421-2019-59-8-833.
  7. Ranjekar A.M., Yadav G.D. Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy. // J. of the Indian Chemical Soc. 2021. V. 98. I. 100002. https://doi.org/10.1016/j.jics.2021.100002
  8. Bhattar S., Abedin Md.A., Kanitkar S., Spivey J.J. A review on dry reforming of methane over perovskite derived catalysts // Catalysis Today. 2021. V. 365. P. 2-23. https://doi.org/10.1016/j.cattod.2020.10.041.
  9. Zhenghong B., Fei Y. Catalytic conversion of biogas to syngas via dry reforming process // Advances in Bioenergy. 2018. V. 3. P. 43-76. https://doi.org/10.1016/bs.aibe.2018.02.002
  10. Kang J.S., Kim D.H., Lee S.D., Hong S.I., Moon D.J. Nickel-based tri-reforming catalyst for production of synthesis gas // Applied Catalysis A: General. 2007. V. 332. № 1. P. 153-158.https://doi.org/10.1016/j.apcata.2007.08.017
  11. Song C.S., Wei P. Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios // Catalysis Today. 2004. V. 98. № 4. P. 463-484. https://doi.org/10.1016/j.cattod.2004.09.054
  12. Pena M.A., Gomez J.P., Fierro J.L.G. New catalytic routes for syngas and hydrogen production // Applied Catalysis A: General. 1996. V. 144. P. 7-57.
  13. Al-Sayari S.A. Recent developments in the partial oxidation of methane to syngas // Open Catalysis J. 2013. V. 6. P. 17-28. https://doi.org/10.2174/1876214X20130729001
  14. Yin X., Hong L. Partial oxidation of methane to syngas over the catalyst derived from double perovskite (La0.5Sr0.5)2FeNiO6-δ // Applied Catalysis A: General. 2009. V. 371. № 1-2. P. 153-160. https://doi.org/10.1016/j.apcata.2009.09.044
  15. Choudhary V.R., Mondal K.C., Mamman A.S., Joshi U.A. Carbon-free dry reforming of methane to syngas over NdCoO3 perovskite-type mixed metal oxide catalyst. // Catalysis Letters. 2005. V. 100. № 3-4. P. 271-276. https://doi.org/10.1007/s10562-004-3467-0
  16. Silva C.R.B., da Conceição L., Ribeiro N.F.P., Souza M.M.V.M. Partial oxidation of methane over Ni-Co perovskite catalysts. // Catalysis Communications. 2011. V. 12. № 7. P. 665-668. https://doi.org/10.1016/j.catcom.2010.12.025
  17. Morales M., Espiell F., Segarra M. Performance and stability of La0.5Sr0.5CoO3-δ perovskite as catalyst precursor for syngas production by partial oxidation of methane // International J. of Hydrogen Energy. 2014. V. 39. № 12. P. 6454-6461. https://doi.org/10.1016/j.ijhydene.2014.02.060
  18. Guo C., Zhang X., Zhang J., Wang Y. Preparation of La2NiO4 catalyst and catalytic performance for partial oxidation of methane // J. of Molecular Catalysis A: Chemical. 2007. V. 269. № 1-2. P. 254-259. https://doi.org/10.1016/j.molcata.2007.01.029
  19. Peña M.A., Fierro J.L.G. Chemical Structures and Performance of Perovskite Oxides // Chem. Reviews. 2001. V. 101. № 7. P. 1981-2018. https://doi.org/10.1021/cr980129f
  20. Lago R., Bini G., Peña M.A., Fierro J.L.G. Partial oxidation of methane to synthesis gas using LnCoO3 perovskites as catalyst precursors // J. of Catalysis. 1997. V. 167. № 1. P. 198-209. https://doi.org/10.1006/jcat.1997.1580
  21. Elbadawi A.H., Ge L., Li Z., Liu S., Wang S., Zhu Z. Catalytic partial oxidation of methane to syngas: review of perovskite catalysts and membrane reactors // Catalysis Reviews. 2021. V. 63. № 1. P. 1-67. https://doi.org/10.1080/01614940.2020.1743420
  22. Royer S., Duprez D., Can F., Courtois X., Batiot-Dupeyrat C., Laassiri S, Alamdari H. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality // Chem. Reviews. 2014. V. 114. № 20. P. 10292-10368. https://doi.org/10.1021/cr500032a
  23. Zhu H., Zhang P., Dai S. Recent advances of lanthanum-based perovskite oxides for catalysis // ACS Catalysis. 2015. V. 5. № 11. P. 6370-6385. https://doi.org/10.1021/acscatal.5b01667
  24. Dedov A.G., Loktev A.S., Ivanov V.K., Bykov M.A., Mukhin I.E., Lidzhiev M.M., Rogaleva E.V., Moiseev I.I. Selective oxidation of methane to synthesis gas: сobalt- and nickel-based catalysts // Doklady Physical Chemistry. 2015. V. 461. Part 2. P. 73-79. https://doi.org/10.1134/S0012501615040028
  25. Дедов А.Г., Локтев А.С., Иванов В.К., Быков М.А., Мухин И.Е., Лиджиев М.М., Рогалева Е.В., Моисеев И.И. Селективное окисление метана в синтез-газ: катализаторы на основе кобальта и никеля. // Доклады академии наук. 2015. Т. 461. № 4. С. 426-432. https://doi.org/10.7868/S0869565215100151.
  26. Loktev A.S., Mukhin I.E., Bykov M.A., Sadovnikov A.A., Osipov A.K., Dedov A.G. Novel high-performance catalysts for partial oxidation and dry reforming of methane to synthesis gas // Petrol. Chemistry. 2022. V. 62. P. 526-543. https://doi.org/10.1134/S0965544122020207
  27. Локтев А.С., Мухин И.Е., Быков М.А., Садовников А.А., Осипов А.К., Дедов А.Г. Новые эффективные катализаторы кислородной и углекислотной конверсии метана в синтез-газ // Нефтехимия. 2022. Т. 62. № 3. С. 387-407. https://doi.org/10.31857/S0028242122030078.
  28. Osazuwa O.U., Setiabudi H.D., Rasid R.A., Cheng C.K. Syngas production via methane dry reforming: a novel application of SmCoO3 perovskite catalyst // J. of Natural Gas Science and Engineering. 2017. V. 37. P. 435-448. https://doi.org/10.1016/j.jngse.2016.11.060
  29. Osazuwa O.U., Cheng C.K. Catalytic conversion of methane and carbon dioxide (greenhouse gases) into syngas over samarium-cobalt-trioxides perovskite catalyst // J. of Cleaner Production. 2017. V. 148. P. 202-211. https://doi.org/10.1016/j.jclepro.2017.01.177
  30. Osazuwa O.U., Cheng C.K. Stoichiometric effects of feed ratio on syngas production from CO2 reforming of methane over SmCoO3 perovskite catalyst // Malaysian J. of Catalysis. 2017. V. 2. P. 12-17.
  31. Toniolo F.S., Newton R., Magalhaes S.H., Perez C.A.C., Schmal M. Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane // Appl. Catal. B: Environmental. 2012. V. 117-118. P. 156-66. https://doi.org/10.1016/j.apcatb.2012.01.009
  32. Vella L.D., Villoria J.A., Specchia S., Mota N., Fierro J.L.G., Specchia V. Catalytic partial oxidation of CH4 with nickel-lanthanum-based catalysts // Catal. Today. 2011. V. 171. P. 84-96. https://doi.org/10.1016/j.cattod.2011.03.074
  33. Dedov A.G., Loktev A.S., Komissarenko D.A., Mazo G.N., Shlyakhtin O.A., Parkhomenko K.V., Kiennemann A.A, Roger A.-C., Ishmurzin A.V., Moiseev I.I. Partial oxidation of methane to produce syngas over a neodymium-calcium cobaltate-based catalyst // Appl. Catalysis A: General. 2015. V. 489. P. 140-146. https://doi.org/10.1016/j.apcata.2014.10.027
  34. Zagaynov I.V., Loktev A.S., Arashanova A.L., Kutsev S.V., Ivanov V.K., Dedov A.G., Moiseev I.I. Ni(Co)-Gd0.1Ti0.1Zr0.1Ce0.7O2 mesoporous materials in partial oxidation and dry reforming of methane into synthesis gas // Chem. Engineering J. 2016. V. 290. P. 193-200. https://doi.org/10.1016/j.cej.2016.01.066
  35. Rietveld H.M. A profile refinement method for nuclear and magnetic structures // J. of Appl. Crystallography. 1969. V. 2. P. 65-71. https://doi.org/10.1107/S0021889869006558

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences