Neutralization of Acidic Exhaust Gas Components by Overbased Additives in Marine Oils: Effects of the Acid Composition on the Neutralization Mechanism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using a combination of IR spectroscopy and small-angle X-ray scattering methods, the study investigates the initial steps of the neutralization of commercial additives, such as overbased calcium alkylbenzene sulfonate and calcium alkyl salicylate, by a number of model acids. The model acids included sulfuric acid, nitric acid (both simulating acidic products of marine fuel combustion), and acetic acid. For the sulfonate additive, it was shown that the amorphous CaCO3 core crystallizes, predominantly into vaterite, with a simultaneous slight increase in the size of the additive’s solid core. In the case of the salicylate additive, no CaCO3 crystallization was observed, and the solid core was slightly reduced in size. The paper proposes an explanation for these transformations, which rests on the difference in the strength of the acids that constitute the shell of the additive’s nanoparticles, and in the water solubility of the calcium salts produced.

About the authors

V. N. Bakunin

Russian National Research Institute for Oil Refinery (VNII NP)

Email: victor.bakunin@mail.ru
111116, Moscow, Russia

V. V. Volkov

A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119333, Moscow, Russia

Yu. N. Bakunina

Russian National Research Institute for Oil Refinery (VNII NP)

Author for correspondence.
Email: petrochem@ips.ac.ru
111116, Moscow, Russia

References

  1. Ma P. Detergents. Chapter 4 in Lubricant additives: Chemistry and Applications. Third Edition. Ed. Rudnick L.R. CRC Press, Tailor and Francis, 2017. (ISBN 9781498731744).
  2. Hudson L.K., Eastoe J., Dowding P.J. Nanotechnology in action: overbased nanodetergents as lubricant oil additives // Adv. Coll. Interface Sci. 2006. V. 123-126. P. 425-431. https://doi.org/10.1016/j.cis.2006.05.003
  3. Seddiek I.S., Elgohary M.M. Eco-friendly selection of ship emissions reduction strategies with emphasis on SOx and NOx emissions // Int. J. Nav. Archit. Ocean Eng. 2014. V. 6. P. 737-748. https://doi: 10.2478/IJNAOE-2013-0209
  4. Ni P., Wang X., Li H. A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines // Fuel. 2020. V. 279. P. 118477. https://doi.org/10.1016/j.fuel.2020.118477
  5. Sullivan T. More changes foreseen for marine lubricants // Lubes'N'Greases. 2021, July 7. https://www.lubesngreases.com/lubereport-americas/more-change-foreseen-for-marine-lubes
  6. Tullo A.H. Is ammonia the fuel of future? // Chemical & Engineering News. 2021. V. 99. № 8. https://cen.acs.org/business/petrochemicals/ammonia-fuel-future/99/i8
  7. Kobayashi H., Hayakawa A., Somarathne K.D.K.A., Okafor E.C. Science and technology of ammonium combustion // Proc. Combust. Inst. 2019. V. 37. P. 109-133. https://doi.org/10.1016/j.proci.2018.09.029
  8. Lee H., Lee M. Recent advances in ammonia combustion technology in thermal power generation system for carbon emission reduction // Energies. 2021. V. 14. P. 5604. https://doi.org/10.3390/en14185604
  9. Hone D.C., Robinson B.Y., Steytler D.C., Glyde R.W., Galsworthy J.R. Mechanism of acid neutralization by overbased colloidal additives in hydrocarbon media // Langmuir. 2000. V. 16. № 2. P. 340-346. https://doi.org/10.1021/la9904354
  10. Fu J., Lu Y., Campbell C.B., Papadopoulos K.D. Acid neutralization by marine cylinder lubricants inside a heating capillary: strong/weak-stick collision mechanism // Ind. Eng. Chem. Res. 2006. V. 45. № 16. P. 5619-5627. https://doi.org/10.1021/ie051209u
  11. Duan Y., Rausa R., Fiaschi P., Papadopoulos K.D. Neutralization of acetic acid by automobile motor oil // Tribol. Intern. 2016. V. 98. P. 94-99. https://doi.org/10.1016/j.triboint.2016.01.053
  12. Duan Y., Rausa R., Zhao Q., Papadopoulos K.D. Neutralization mechanism of acetic acid by overbased colloidal nanoparticles // Tribol. Lett. 2016. V. 64. P. 8. https://doi.org/10.1007/s11249-016-0742-3
  13. Chen C.-Y., Papadopoulos K.D. Ethanol's effects on acid neutralization by motor oils // Tribol. Int. 2019. V. 132. P. 24-29. https://doi: 10.1016/j.triboint.2018.12.006
  14. Lejre K.H., Glaborg P., Christensen H., Mayer S., Kiil S. Mixed flow reactor experiments and modelling of sulfuric acid neutralization in lube oil for large two-stroke diesel engines // Ind. Eng. Chem. Res. 2019. V. 58. № 1. P. 138-155. https://doi.org/10.1021/acs.iecr.8b05808
  15. Lejre K.H., Glaborg P., Christensen H., Mayer S., Kiil S. Experimental investigation and mathematical modeling of the reaction between SO2(g) and CaCO3(s)-containing micelles in lube oil for large two-stroke marine diesel engines // Chem. Engin. J. 2020. V. 388. P. 124188. https://doi.org/10.1016/j.cej.2020.124188
  16. Kjemtrup L., Cordtz R.F., Jensen M.V., Schramm J. An experimental investigation of the corrosive influence of SO2 relative to H2SO4 of marine engine cylinder liners // Lubr. Sci. 2020. V. 32. № 3. P. 131-144. https://doi.org/10.1002/ls.1492
  17. Бакунин В.Н., Алексанян Д.Р., Бакунина Ю.Н. Полиморфы карбоната кальция в высокощелочных присадках к маслам и в смазках (обзор) // Ж. Прикл. химии. 2022. Т. 95. № 4. С. 410-421. https://doi.org/10.31857/S0044461822040016
  18. Manso J.L., Hallouis M., Martin J.M. Colloidal antiwear additives. 1. Structural study of overbased calcium alkylbenzene sulfonate micelles // Colloids Surf. A: Physicochem. Engin. Asp. 1993. V. 71. № 2. P. 123-134. https://doi.org/10.1016/0927-7757(93)80336-D
  19. Sulfonate grease improvement // Патент США № 5338467. 1994.
  20. Denis R., Sivik M. Calcium sulfonate grease-making process // NLGI Spokesman. 2009. V. 73. № 5. P. 30-37.
  21. Feigin L.A., Svergun D.I. Structure Analysis by Small-Angle X-Ray and Neutron Scattering. Plenum 1987. 321, 6624. https://doi.org/10.1007/978-1-4757-6624-0
  22. Inoue K., Watanabe H., Nose Y. Infrared study of solubilization of carboxylic acid by alkaline earth metal salts of dinonylnaphthalenesulfonic acid in hexane // J. Colloid Interface Sci. 1983. V. 94. № 1. P. 229-236. https://doi.org/10.1016/0021-9797(83)90253-9
  23. Vagenas N.V., Gatsouli A., Kontoyannis C.G. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy // Talanta. 2003. V. 59. № 4. P. 831-836. https://doi.org/10.1016/S0039-9140(02)00638-0
  24. Delfort B., Daoudal B., Barré L. Particle size determination of (functionalized) colloidal calcium carbonate by small angle X-ray scattering - relation with antiwear properties // Tribol. Trans. 1999. V. 42. № 2. P. 296-302. https://doi.org/10.1080/10402009908982220
  25. Toffolo M.B., Regev L., Dubernet S., Lefrais Y., Boaretto E. FTIR-based crystallinity assessment of aragonite-calcite mixtures in archaeological lime binders altered by diagenesis // Minerals. 2019. V. 9. № 2. P. 121. https://doi.org/10.3390/min9020121
  26. Liu D., Zhang M., Zhao G., Wang, X. Tribological behavior of amorphous and crystalline overbased calcium sulfonate as additives in lithium complex grease // Tribol. Lett. 2012. V. 47. P. 265-273. https://doi.org/10.1007/s11249-011-9884-5
  27. Liu D., Zhao G., Wang X. Tribological performance of lubricating greases based on calcium carbonate polymorphs under boundary lubrication condition // Tribol. Lett. 2012. V. 47. P. 183-194. https://doi.org/10.1007/s11249-012-9976-x
  28. Dennis J.E.Jr., Gay D.M., Welsh R.E. Algorithm 573: NL2SOL - an adaptive nonlinear least-squares algorithm [E4] // ACM Trans. Math. Soft. 1981. V. 7. № 3. P. 369-383. https://doi.org/10.1145/355958.355966
  29. Guinier A. X-Ray diffraction in crystals, imperfect crystals, and amorphous bodies. W.H. Freeman and Company, San Francisco and London, 1963. 378 p.
  30. Harris F.J. On the use of windows for harmonic analysis with the discrete Fourier transform // Proc. IEEE. 1978. V. 66. № 1. P. 51-83. https://doi.org/10.1109/PROC.1978.10837
  31. Tavacoli J.W., Dowding P.J., Steytler D.C., Barnes D.J., Routh A.F. Effect of water on overbased sulfonate engine oil additives // Langmuir. 2008. V. 24. № 8. P. 3807-3813. https://doi.org/10.1021/la703680e
  32. Lee S.Y., O'Sullivan M., Routh A.F., Clarke S.M. Thin water layers on CaCO3 particles dispersed in oil with added salts // Langmuir. 2009. V. 25. № 7. P. 3981-3984. https://doi.org/10.1021/la802616n
  33. Du H., Steinacher M., Borca C., Huthwelker T., Murello A., Stellacci F., Amstad E. Amorphous CaCO3: influence of the formation time on its degree of hydration and stability // J. Amer. Chem. Soc. 2018. V. 140. № 43. P. 14289-14299. https://doi.org/10.1021/jacs.8b08298
  34. Leukel S., Panthöfer M., Mondeshki M., Kieslich G., Wu Y., Krautwurst N., Tremel W. Trapping amorphous intermediates of carbonates - a combined total scattering and NMR study // J. Amer. Chem. Soc. 2018. V. 140. № 44. P. 14638-14646. https://doi.org/10.1021/jacs.8b06703
  35. Xu X., Han J.T., Kim D.H., Cho K. Two modes of transformation of amorphous calcium carbonate films in air // J. Phys. Chem. B. 2006. V. 110. № 6. P. 2764-2770. https://doi.org/10.1021/jp055712w
  36. Bearchel C.A., Heyes D.M., Moreton D.J., Taylor S.E. Overbased detergent particles: experimental and molecular modelling studies // Phys. Chem. Chem. Phys. 2001. V. 3. P. 4774-4783. https://doi.org/10.1039/B103628A
  37. Mackwood W., Muir R. Calcium sulfonate grease. One decade later // NLGI Spokesman. 1999. V. 63. № 5. P. 23-37.
  38. Guthrie J.P. Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units // Can. J. Chem. 1978. V. 56. № 17. P. 2342-2354. https://doi.org/10.1139/v78-385
  39. Williams R. pKa data compiled by R. Williams. https://organicchemistrydata.org/hansreich-/resources/pka/pka_data/pka-compilation-williams.pdf.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Russian Academy of Sciences