Основные свойства, способы получения и направления применения пористых керамических материалов
- Authors: Федотов А.С.1, Грачев Д.Ю.1, Капустин Р.Д.2
-
Affiliations:
- Институт нефтехимического синтеза им. А.В. Топчиева РАН
- Институт структурной макрокинетики и проблем материаловедения РАН
- Issue: Vol 64, No 4 (2024)
- Pages: 317-360
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/681517
- DOI: https://doi.org/10.31857/S0028242124040031
- EDN: https://elibrary.ru/MVQTSV
- ID: 681517
Cite item
Abstract
В настоящей статье подробно рассмотрена современная классификация пористых керамических материалов, а также приведены описания различных подходов к их изготовлению и практическому применению. Проиллюстрированы перспективные пути научного и технологического развития для решения поставленных задач. Обзор предназначен для широкого круга специалистов, работающих в области материаловедения, мембранного разделения и гетерогенного катализа.
Full Text

About the authors
А. С. Федотов
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Author for correspondence.
Email: alexey.fedotov@ips.ac.ru
ORCID iD: 0000-0002-8550-7921
д.х.н.
Russian Federation, Москва, 119991Данил Юрьевич Грачев
Институт нефтехимического синтеза им. А.В. Топчиева РАН
Email: alexey.fedotov@ips.ac.ru
ORCID iD: 0000-0003-4548-6051
асп.
Russian Federation, Москва, 119991Роман Дмитриевич Капустин
Институт структурной макрокинетики и проблем материаловедения РАН
Email: alexey.fedotov@ips.ac.ru
ORCID iD: 0000-0002-8932-7709
к.т.н.
Russian Federation, Черноголовка Московской обл., 142432References
- Eom J.H., Kim Y.W., Raju S. Processing and properties of macroporous silicon carbide ceramics: A review // J. of Asian Ceramic Societies. 2013. V. 1. № 3. P. 220–242. https://doi.org/10.1016/j.jascer.2013.07.003
- Colombo P. In praise of pores // Science. 2008. V. 322. № 5900. P. 381–383. https://doi.org/10.1126/science.1162962
- Colombo P. Ceramic foams: fabrication, properties and applications // Key Engineering Materials. 2002. V. 206–213. P. 1913–1918. https://doi.org/10.4028/www.scientific.net/KEM. 206-213.1913
- Sakka Y., Tang F., Fudouzi H., Uchikoshi T. Fabrication of porous ceramics with controlled pore size by colloidal processing // Science and Technology of Advanced Materials. 2005. V. 6. № 8. P. 915. https://doi.org/10.1016/j.stam.2005.07.006
- Liu P.S., Chen G.F. Fabricating porous ceramics // Porous materials. 2014. P. 221–302. https://doi.org/ 10.1016/B978-0-12-407788-1.00005-8
- Ohji T., Fukushima M. Macro-porous ceramics: processing and properties // Int. Materials Reviews. 2012. V. 57. № 2. P. 115–131. https://doi.org/10.1179/1743280411Y.0000000006
- Studart A.R., Gonzenbach U.T., Tervoort E., Gauckler L.J. Processing routes to macroporous ceramics: a review // J. of the Am. Ceramic Soc. 2006. V. 89. № 6. P. 1771–1789. https://doi.org/10.1111/j.1551-2916.2006.01044.x
- Guzman I.Y. Certain principles of formation of porous ceramic structures. Properties andaplications (a review) // Glass and Ceramics. 2003. V. 60. P. 280–283. https://doi.org/10.1023/B:GLAC.0000008227.85944.64
- Gauckler L.J., Studart A.R., Tervoort E., Gonzenbach U.T., Akartuna I. Ultrastable particle-stabilized foams and emulsions // Patent USA № 897530. 2015. https://patents.google.com/patent/US8975301B2/encture, manufacturing, properties and applications. – John Wiley & Sons, 2006. https://doi.org/10.1002/3527606696
- Scheffler M., Colombo P. (ed.). Cellular ceramics: structure, manufacturing, properties and applications. – John Wiley & Sons, 2006. https://doi.org/10.1002/3527606696
- Pokhrel A., Seo D.N., Lee S.T., Kim I.J. Processing of porous ceramics by direct foaming: a review // J. of the Korean Ceramic Soc. 2013. V. 50. № 2. P. 93–102. https://doi.org/10.4191/kcers.2013.50.2.093
- Uthaman A., Lal H.M., Thomas S. Fundamentals of silver nanoparticles and their toxicological aspects // Polymer nanocomposites based on silver nanoparticles: synthesis, characterization and applications. 2021. P. 1–24. https://doi.org/10.1007/978-3-030-44259-0_1
- Lv Y., Liu H., Wang Z., Liu S., Hao L., Sang Y., Liu D., Wang J., Boughton R.I. Silver nanoparticle-decorated porous ceramic composite for water treatment // J. of Membrane Science. 2009. V. 331. № 1–2. P. 50–56. https://doi.org/10.1016/j.memsci.2009.01.007
- Lal H.M., Thomas S., Li T., Maria H.J. In: Polymer Nanocomposites Based on Silver Nanoparticles. Springer, 2021. P. 247–265. https://doi.org/ 10.1007/978-3-030-44259-0
- Al-Naib U.M.B. Introd. A brief introduction to porous ceramic. Recent advances in porous ceramics. IntechOpen, 2018. https://doi.org/10.5772/intechopen.74747
- Gaydardzhiev S., Gusovius H., Wilker V., Ay P. Gel-casted porous ceramics by use of natural fibres as pore developers // J. of Porous Materials. 2008. V. 15. P. 475–480. https://doi.org/10.1007/s10934-007-9099-1
- German R.M., Suri P., Park S. J. Liquid phase sintering // J. of materials science. 2009. V. 44. P. 1–39. https://doi.org/10.1007/s10853-008-3008-0
- Misyura S.Y. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation // Scientific Reports. 2016. V. 6. № 1. P. 30324. https://doi.org/10.1038/srep30324
- Nishida T., Morimoto A., Yamamoto Y., Kubuki S. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal // Applied Water Science. 2017. V. 7. № 8. P. 4281–4286. https://doi.org/10.1007/s13201-017-0561-1
- Gregorová E., Pabst W. Porous ceramics prepared using poppy seed as a pore-forming agent // Ceramics International. 2007. V. 33. № 7. P. 1385–1388. https://doi.org/10.1016/j.ceramint.2006.05.019
- Mocciaro A., Lombardi M.B., Scian A.N. Ceramic material porous structure prepared using pore-forming additives // Refractories and Industrial Ceramics. 2017. V. 58. № 1. P. 65–68. https://doi.org/10.1007/s11148-017-0055-6
- Ribeiro G.C., Fortes B.A., Silva L.D., Castro J.A., Ribeiro S. Evaluation of mechanical properties of porous alumina ceramics obtained using rice husk as a porogenic agent // Cerâmica. 2019. V. 65. P. 70–74. https://doi.org/10.1590/0366-6913201965S12604
- Yao X.M., Tan H.T., Jiang D.L. Preparation of porous hydroxyapatite ceramics // J. Inorg. Mater. 2000. V. 15. P. 467–472. https://doi.org/10.3321/j.issn:1000-324X.2000.03.016
- Bowden M.E., Rippey M.S. Porous ceramics formed using starch consolidation // Key Engineering Materials. 2002. V. 206. P. 1957–1960. https://doi.org/10.4028/www.scientific.net/KEM.206-213.1957
- Karl S., Somers A.V. Method of making porous ceramic articles // Patent USA № 3090094. 1963. https://patents.google.com/patent/US3090094A/en
- Zhu X.W., Jiang D.L. The Polymeric sponge impregnation process. A Type of economic and suitable process for preparing porous ceramics // Bull. Chin. Ceram. Soc. 2000. V. 19. № 3. P. 45–51. https://doi.org/ 10.3969/j.issn.1001-1625.2000.03.012
- Montanaro L., Jorand Y., Fantozzi G., Negro A. Ceramic foams by powder processing // Journal of the European Ceramic Society. 1998. V. 18. № 9. P. 1339–1350. https://doi.org/10.1016/S0955-2219(98)00063-6
- Wen Z., Han Y., Liang L., Li J. Preparation of porous ceramics with controllable pore sizes in an easy and low-cost way // Materials characterization. 2008. V. 59. № 9. P. 1335–1338. https://doi.org/ 10.1016/j.matchar.2007.11.010
- Hirschfeld D.A., Li T.K., LIu D.M. Processing of porous oxide ceramics // Key Engineering Materials. 1995. V. 115. P. 65–80. https://doi.org/10.4028/www.scientific.net/KEM. 115.65
- Yoshino A., Iwami I. Inorganic foam and preparation thereof // Patent USA № 4207113. 1980. https://patents.google.com/patent/US4207113A/en
- Fujiu T., Messing G.L., Huebner W. Processing and properties of cellular silica synthesized by foaming sol‐gels // J. of the Am. Ceramic Soc. 1990. V. 73. № 1. P. 85–90. https://doi.org/10.1111/j.1151-2916.1990.tb05095.x
- Nettleship I. Applications of porous ceramics // Key Engineering Materials. 1996. V. 122. P. 305–324. https://doi.org/10.4028/www.scientific.net/KEM. 122-124.305
- Velev O.D., Kaler E.W. Structured porous materials via colloidal crystal templating: from inorganic oxides to metals //Advanced Materials. 2000. V. 12. 7. P. 531–534. https://doi.org/10.1002/(SICI)1521-4095(200004) 12:7<531::AID-ADMA531>3.0.CO;2-S
- Brown J.J., Hirschfeld D.A., Li T.K. Alkalai corrosion resistant coatings and ceramic foams having a superfine cell structure and method of processing // Patent USA № 5268199 США. 1993. https://vtechworks.lib.vt.edu/server/api/core/bitstreams/bda1b5f0-f39c-4437-96d7-5193f254c4fd/content
- Hirschfeld D.A., Li T.K., Liu D.M. Processing of porous oxide ceramics // Key Eng. Mater. 1996. V. 115. P. 65–80. https://doi.org/10.4028/www.scientific.net/KEM. 115.65
- Yanagisawa K., Ioku K., Yamasaki N. Formation of anatase porous ceramics by hydrothermal hot‐pressing of amorphous titania spheres // J. of the Am. Ceramic Soc.. 1997. V. 80. № 5. P. 1303–1306. https://doi.org/10.1111/j.1151-2916.1997.tb02982.x
- Hooshmand S., Nordin J., Akhtar F. Porous alumina ceramics by gel casting: Effect of type of sacrificial template on the properties // Int. J. of Ceramic Engineering & Science. 2019. V. 1. № 2. P. 77–84. https://doi.org/10.1002/ces2.10013
- Uthaman A., Lal H. M., Li C., Xian G., Thomas S. Mechanical and water uptake properties of epoxy nanocomposites with surfactant-modified functionalized multiwalled carbon nanotubes // Nanomaterials. 2021. V. 11. № 5. P. 1234. https://doi.org/10.3390/nano11051234
- Wang H.T., Liu X.Q., Meng G.Y. Porous α- ceramics prepared by gelcasting // Materials research bulletin. 1997. V. 32. № 12. P. 1705–1712. https://doi.org/10.1016/S0025-5408(97)00152-9
- Qian J.-M., Jin Z.-H., Qiao G.-J. Recent Progress in Research on Woodceramics // J. Inorg. Mater. 2003. V. 18. P. 716–724. https://doi.org/10.3321/j.issn:1000-324X.2003.04.002
- Hirschfeld D.A., Li T.K., Liu D.M. Processing of porous oxide ceramics // Key Eng. Mater. 1996. V. 115. P. 65–80. https://doi.org/ 10.4028/www.scientific.net/KEM.115.65
- Green D.J. Fabrication and mechanical properties of lightweight ceramics produced by sintering of hollow spheres // J. of Am. Ceramic Soc. 1985. V. 68. № 7. P. 403–409. https://doi.org/10.1111/j.1151-2916.1985.tb10153.x
- Zhang X., Huo W., Lu Y., Gan K., Yan S., Liu J., Yang J. Porous -based ceramics with uniform pore structure originated from single-shell hollow microspheres // J. Мaterials Science. 2019. V. 54. P. 4484–4494. https://doi.org/10.1007/s10853-018-3118-2
- Yang J.F., Zhang G.J., Ohji T. Porosity and microstructure control of porous ceramics by partial hot pressing // J. Materials Research. 2001. V. 16. № 7. P. 1916–1918. https://doi.org/10.1557/JMR.2001.0262
- Dorozhkin S.V. Calcium orthophosphate-based bioceramics // Materials. 2013. V. 6. № 9. P. 3840–3942. https://doi.org/10.3390/ma6093840
- Sigl L.S., Kleebe H. Core/Rim structure of liquid‐phase‐sintered silicon carbide // J. Am. Ceram. Soc. 1993. V. 76. P. 773–776. https://doi.org/10.1111/j.1151-2916.1993.tb03677.x.
- Zhang Q., Yang X., Li P., Huang G., Feng S., Shen C., Han B., Zhang X., Jin F., Xu F., Lu T.J. Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation // Progress in Materials Science. 2015. V. 74. P. 332–400. https://doi.org/10.1016/j.pmatsci.2015.05.001
- Zhou Y., Zuo X.Q., Sun J.H., Mei J., Sun J.L. Effects of sintering parameters on the structures of Fe–Cr–Al extruded honeycombs // Materials Science and Engineering: A. 2007. V. 457. № 1–2. P. 329–333. https://doi.org/10.1016/j.msea.2006.12.117
- Obada D.O., Dodoo-Arhin D., Dauda M., Anafi F.O., Ahmed A.S., Ajayi O.A. Pressureless sintering and gas flux properties of porous ceramic membranes for gas applications // Results in physics. 2017. V. 7. P. 3838–3846. https://doi.org/ 10.1016/j.rinp.2017.10.002
- Ohji T., Fukushima M. Macro-porous ceramics: processing and properties // Int. Materials Reviews. 2012. V. 57. № 2. P. 115–131. https://doi.org/10.1179/1743280411Y.0000000006
- German R.M., Suri P., Park S.J. Liquid phase sintering // J. of materials science. 2009. Т. 44. P. 1–39. https://doi.org/10.1007/s10853-008-3008-0
- Misyura S.Y. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation // Scientific Reports. 2016. V. 6. № 1. P. 30324. https://doi.org/10.1038/srep30324
- He X., Su B., Tang Z., Zhao B., Wang X., Yang G., Qiu H., Zhang H., Yang J. The comparison of macroporous ceramics fabricated through the protein direct foaming and sponge replica methods // J. of Porous Materials. 2012. V. 19. P. 761–766. https://doi.org/10.1007/s10934-011-9528-z
- Miretzky P., Cirelli A.F. Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review //J. Hazardous Materials. 2010. V. 180. № 1–3. P. 1–19. https://doi.org/10.1016/j.jhazmat.2010.04.060
- Sarin V., Pant K.K. Removal of chromium from industrial waste by using eucalyptus bark // Bioresource technology. 2006. V. 97. № 1. P. 15–20. https://doi.org/10.1016/j.biortech.2005.02.010
- Dong H., Lin Z., Wan X., Feng L. Risk assessment for the mercury polluted site near a pesticide plant in Changsha, Hunan, China // Chemosphere. 2017. V. 169. P. 333–341. https://doi.org/10.1016/j.chemosphere.2016.11.084
- Rehman Z.U., Khan S., Brusseau M.L., Shah M.T. Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (Oat) biomass // J. of Hazardous Materials. 2000. V. 80. № 1–3. P. 175–188. https://doi.org/10.1016/S0304-3894(00)00301-0
- Rehman Z.U., Khan S., Brusseau M.L., Shah M.T. Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan // Chemosphere. 2017. V. 168. P. 1589–1596. https://doi.org/10.1016/j.che mosphere.2016.11.152
- Vo T.S., Hossain M.M., Jeong H.M., Kim K. Heavy metal removal applications using adsorptive membranes // Nano convergence. 2020. V. 7. № 1. P. 36. https://doi.org/10.1186/s40580-020-00245-4
- Pilicita V., Páez Fajardo G.J., Ormaza R., Piper L.F.J., Silva-Yumi J. Filter design for arsenic species in aqueous environments: An ab initio optimization of the absorbing capacity of magnetite-based arsenic filters // Materials Letters. 2021. V. 295. ID 129794. https://doi.org/10.1016/j.matlet.2021.129794
- USEPA. Federal Register, 2001. P. 6976–7066. https://www.govinfo.gov/app/details/FR-2001-01-22/01-1668
- Choi N.C., Cho K.H., Kim M.S., Park S.J., Lee C.G. A hybrid ion-exchange fabric/ceramic membrane system to remove As(V), Zn (ii), and turbidity from wastewater // Applied Sciences. 2020. V. 10. № 7. P. 2414. https://doi.org/10.3390/app10072414
- Chen J.H., Liu P.S., Cheng W. PBA-loaded albite-base ceramic foam in application to adsorb harmful ions of Cd, Cs and As(V) in water // Multidiscipline Modeling in Materials and Structures. 2019. V. 15. № 3. P. 659–672. https://doi.org/10.1108/MMMS-07-2018-0140
- U.S. Geological Survey: Mineral Commodity Summaries 2019. https://pubs.usgs.gov/publication/70202434
- Choubey P.K., Kim M.S., Srivastava R.R., Lee J.C., Lee J.Y. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources // Minerals Engineering. 2016. V. 89. P. 119–137. https://doi.org/10.1016/j.mineng.2016.01.010
- Ounissi T., Dammak L., Larchet C., Fauvarque J.-F., Selmane Bel Hadj Hmida E. Novel lithium selective composite membranes: synthesis, characterization and validation tests in dialysis // J. of Materials Science. 2020. V. 55. P. 16111–16128. https://doi.org/10.1007/s10853-020-05147-8
- Romero A.R., Elsayed H., Bernardo E. Highly porous cordierite ceramics from engineered basic activation of metakaolin/talc aqueous suspensions // J. of the European Ceramic Society. 2020. P. 40. № 15. P. 6254–6258. https://doi.org/10.1016/j.jeurceramsoc.2020.06.072
- Atkins Jr P.F., Scherger D.A. A review of physical-chemical methods for nitrogen removal from wastewaters // Proceedings of the conference on nitrogen as a water pollutant. – Pergamon, 2013. P. 713–719. https://doi.org/10.1016/B978-1-4832-1344-6.50051-4
- Adam M.R., Othman M.H.D., Hubadillah S.K., Abd Aziz M.H., Jamalludin M.R. Corrosion behavior of bulk nanocrystalline copper in ammonia solution // Materials Letters. 2011. P. 65. № 5. P. 857–859. https://doi.org/10.1016/j.matlet.2010.12.014
- Kouvelos E., Kesore K., Steriotis T., Grigoropoulou H., Bouloubasi D., Theophilou N., Tzintzos S., Kanelopoulos N. High pressure N2/CH4 adsorption measurements in clinoptilolites // Microporous and Mesoporous Materials. 2007. P. 99. № 1–2. P. 106–111. https://doi.org/10.1016/j.micromeso.2006.07.036
- Adam M.R., Othman M.H.D., Kurniawan T.A., Puteh M.H., Ismail A.F., Khongnakorn W., Rahman M. A., Jaafar J. Influence of the natural zeolite particle size toward the ammonia adsorption activity in ceramic hollow fiber membrane // Membranes. 2020. P. 10. № 4. P. 63. https://doi.org/10.3390/membranes10040063
- Yaroslavtsev A.B. Solid electrolytes: main prospects of research and development // Russian Chemical Reviews. 2016. V. 85. № 11. P. 1255. https://doi.org/10.1070/RCR4634
- Solovieva A.A., Kulbakin I.V. The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air // IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018. V. 347. № 1. ID 012036. https://doi.org/10.1088/1757-899X/347/1/012036
- Kulbakin I.V., Fedorov S.V. Promising NiO–30 wt% Ag–40 wt% membrane material for separation of oxygen from air // Inorganic Materials: Applied Research. 2018. V. 9. P. 868–872. https://doi.org/10.1134/S2075113318050180
- Han N., Wei Q., Zhang S., Yang N., Liu S. Rational design via tailoring Mo content in to improve oxygen permeation properties in atmosphere // J. of Alloys and Compounds. 2019. V. 806. P. 153–162. https://doi.org/10.1016/j.jallcom.2019.07.209
- Bardhan P. Ceramic honeycomb filters and catalysts // Current Opinion in Solid State and Materials Science. 1997. V. 2. № 5. P. 577–583. https://doi.org/10.1016/S1359-0286(97)80048-4
- Labhsetwar N., Doggali P., Rayalu S., Yadav R., Mistuhashi T., Haneda H. Ceramics in environmental catalysis: applications and possibilities // Chinese J. of Catalysis. 2012. V. 33. № 9–10. P. 1611–1621. https://doi.org/10.1016/S1872-2067(11)60440-3
- Cerri I., Saracco G., Specchia V. Methane combustion over low-emission catalytic foam burners // Catalysis today. 2000. V. 60. № 1–2. P. 21–32. https://doi.org/10.1016/S0920-5861(00)00313-8
- Fedotov A.S., Uvarov V.I., Tsodikov M.V, Paul S., Simon P., Marinova M., Dumeignil F. Production of styrene by dehydrogenation of ethylbenzene on a [Re, W]/γ- (K, Ce)/α- porous ceramic catalytic converter // Chem. Engineering and Processing-Process Intensification. 2021. V. 160. P. 108265. https://doi.org/10.1016/j.cep.2020.108265
- Fedotov A.S., Uvarov V.I., Tsodikov M.V., Paul S., Simon P., Marinova M., Dumeignil F. Dehydrogenation of cumene to α-methylstyrene on [Re, W]/γ-(K, Ce)/α- and [Fe, Cr]/γ-(K, Ce)/α- porous ceramic catalytic converters // Petrol. Chemistry. 2020. V. 60. P. 1268–1283. https://doi.org/10.1134/S0965544120110080
- Fraga M.C., Sanches S., Crespo J.G., Pereira V.J. Assessment of a new silicon carbide tubular honeycomb membrane for treatment of olive mill wastewaters // Membranes. 2017. V. 7. № 1. P. 12. https://doi.org/10.3390/membranes7010012
- Fraga M.C., Sanches S., Crespo J.G., Pereira V.J. Morphological, chemical surface and filtration characterization of a new silicon carbide membrane // J. of the European Ceramic Society. 2017. V. 37. № 3. P. 899–905. https://doi.org/10.1016/j.jeurceramsoc.2016.10.007
- Judkins R.R., Stinton D.P., DeVan J.H. A review of the efficacy of silicon carbide hot-gas filters in coal gasification and pressurized fluidized bed combustion environments // J. Eng. Gas Turbines Power. 1996. V. 118. № 3. P. 500–506. https://doi.org/10.1115/1.2816676
- Ledoux M.J., Hantzer S., Huu C.P., Guille J., Desaneaux M.P. New synthesis and uses of high-specific-surface SiC as a catalytic support that is chemically inert and has high thermal resistance // J. of Catalysis. 1988. V. 114. № 1. P. 176–185. https://doi.org/10.1016/0021-9517(88)90019-X
- Taslicukur Z., Balaban C., Kuskonmaz N. Production of ceramic foam filters for molten metal filtration using expanded polystyrene // J. of the European Ceramic Soc. 2007. V. 27. № 2–3. P. 637–640. https://doi.org/10.1016/j.jeurceramsoc.2006.04.129
- Wei G.C. Method for forming fibrous silicon carbide insulating material. – Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) // Patent US № 4481179. 1984. https://patents.google.com/patent/US4481179A/en
- Li J., Wu M., Du H., Wang B., Li Y., Huan W. Highly effective catalytic reduction of nitrobenzene compounds with gold nanoparticle-immobilized hydroxyapatite nanowire-sintered porous ceramic beads // New J. of Chemistry. 2021. V. 45. № 10. P. 4601–4610. https://doi.org/10.1039/D0NJ06209J
- Das D., Nijhuma K., Gabriel A.M., Daniel G.P.F., Murilo D.D.M.I. Recycling of coal fly ash for fabrication of elongated mullite rod bonded porous SiC ceramic membrane and its application in filtration // J. of the European Ceramic Soc. 2020. V. 40. № 5. P. 2163–2172. https://doi.org/10.1016/j.jeurceramsoc.2020.01.034
- Dong L., Zhang H., Zhang J., Wu W., Jia Q. Carbon nanotube modified sepiolite porous ceramics for high-efficient oil/water separation. Wuji Cailiao Xuebao// J. Inorg. Mater. 2020. V. 35. P. 689–696. https://doi.org/10.15541/jim20190382
- Gao N., Li J., Quan, C., Wang X., Yang Y. Oily sludge catalytic pyrolysis combined with fine particle removal using a Ni-ceramic membrane // Fuel. 2020. V. 277. ID 118134. https://doi.org/10.1016/j.fuel.2020.118134
- Liu Y., Song Z., Wang W., Wang Z., Zhang Y., Liu C., Wang Y., Li A., Xu B., Qi F. A catalytic ozonation membrane reactor used for water purification: Membrane fabrication and performance evaluation // Separation and Purification Technology. 2021. V. 265. ID 118268. https://doi.org/10.1016/j.seppur.2020.118268
- de Araujo Scharnberg A.R., de Loreto A.C., Wermuth T.B., Alves A.K., Arcaro S., dos Santos P.A.M., Rodriguez A.D.A.L. Porous ceramic supported nanoparticles: Enhanced photocatalytic activity for Rhodamine B degradation // Boletín de la Sociedad Española de Cerámica y Vidrio. 2020. V. 59. № 6. P. 230–238. https://doi.org/10.1016/j.bsecv.2019.12.001
- Wu Z., Hou Y., Li X., Li Y., Cao H. Pilot study on catalyzed oxidation-ceramic membrane-high pressure reverse osmosis for desulfurization wastewater recovery // IOP Conference Series: Earth and Environmental Science. – IOP Publishing, 2021. V. 668. № 1. ID 012033. https://doi.org/10.1088/1755-1315/668/1/012033
- Wang S., Tian J., Jia L., Jia J., Shan S., Wang Q., Cui F. Removal of aqueous organic contaminants using submerged ceramic hollow fiber membrane coupled with peroxymonosulfate oxidation: Comparison of CuO catalyst dispersed in the feed water and immobilized on the membrane // J. of Membrane Science. 2021. V. 618. ID 118707. https://doi.org/10.1016/j.memsci.2020.118707
- Bari M.A., Kindzierski W.B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment // Science of the Total Environment. 2018. V. 631. P. 627–640. https://doi.org/10.1016/j.scitotenv.2018.03.023
- Gallon V., Le Cann P., Sanchez M., Dematteo C., Le Bot B. Emissions of VOCs, SVOCs, and mold during the construction process: Contribution to indoor air quality and future occupants’ exposure // Indoor air. 2020. V. 30. № 4. P. 691–710. https://doi.org/10.1111/ina.12647
- Zagoruiko A.N., Mokrinskii V.V., Veniaminov S.A., Noskov A.S. On the performance stability of the catalyst for VOC incineration under forced adsorption-catalytic cycling conditions //J. of environmental chemical engineering. 2017. V. 5. № 6. P. 5850–5856. https://doi.org/10.1016/j.jece.2017.11.019
- Feng S., Liu J., Gao B., Bo L., Cao L. The filtration and degradation mechanism of toluene via microwave thermo-catalysis ceramic membrane // J. of Environmental Chemical Engineering. 2021. V. 9. № 2. ID 105105. https://doi.org/10.1016/j.jece.2021.105105
- Krivoshapkina E.F., Vedyagin A.A., Krivoshapkin P.V., Desyatykh I.V. Carbon monoxide oxidation over microfiltration ceramic membranes // Petrol. Chemistry. 2015. V. 55. P. 901–908. https://doi.org/10.1134/S0965544115100096
- Duan C., Tong J., Shang M., Nikodemski S., Sanders M., Ricote S., Almansoori A., O’Hayre R. Readily processed protonic ceramic fuel cells with high performance at low temperatures // Science. 2015. V. 349. № 6254. P. 1321–1326. https://doi.org/10.1126/science.aab3987
- Iwahara H. Proton conducting ceramics and their applications // Solid State Ionics. 1996. V. 86. P. 9-15. https://doi.org/10.1016/0167-2738(96)00087-2
- Molenda J., Kupecki J., Baron R., Blesznowski M., Brus G., Brylewski T., Bucko M., Chmielowiec J., Cwieka K., Gazda M. Status report on high temperature fuel cells in Poland–Recent advances and achievements // Int. J. of Hydrogen Energy. 2017. V. 42. № 7. P. 4366–4403. https://doi.org/10.1016/j.ijhydene.2016.12.087
- Phair J.W., Badwal S.P.S. Review of proton conductors for hydrogen separation // Ionics. 2006. V. 12. № 2. P. 103–115. https://doi.org/ 10.1007/s11581-006-0016-4
- Tao Z., Yan L., Qiao J.,Wang B., Zhang L., Zhang J. A review of advanced proton-conducting materials for hydrogen separation // Progress in Materials Science. 2015. V. 74. P. 1–50. https://doi.org/10.1016/j.pmatsci.2015.04.002
- Coors W.G. Protonic ceramic fuel cells for high-efficiency operation with methane // J. of Power Sources. 2003. V. 118. № 1–2. P. 150–156. https://doi.org/10.1016/S0378-7753(03)00072-7
- Duan C., Tong J., Shang M., Nikodemski S., Sanders M., Ricote S., Almansoori A., O’Hayre R. Readily processed protonic ceramic fuel cells with high performance at low temperatures // Science. 2015. V. 349. № 6254. P. 1321–1326. https://doi.org/10.1126/science.aab3987
- Norby T. Solid-state protonic conductors: principles, properties, progress and prospects // Solid State Ionics. 1999. V. 125. № 1–4. P. 1–11. https://doi.org/10.1016/S0167-2738(99)00152-6
- Sakai T., Matsushita S., Matsumoto H., Okada S., Hashimoto S., Ishihara T. Int. temperature steam electrolysis using strontium zirconate-based protonic conductors // Int. J. of Hydrogen Energy. 2009. V. 34. № 1. P. 56–63. https://doi.org/10.1016/j.ijhydene.2008.10.011
- Marnellos G., Stoukides M. Ammonia synthesis at atmospheric pressure // Science. 1998. V. 282. № 5386. P. 98–100. https://doi.org/10.1126/science.282.5386.98
- Morejudo S.H., Zanón R., Escolástico S., Yuste-Tirados I., Malerød-Fjeld H., Vestre P.K., Coors W.G., Martínez A., Norby T., Serra J.M. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor // Science. 2016. V. 353. № 6299. P. 563–566. https://doi.org/10.1126/science.aag0274
- Malerød-Fjeld H., Clark D., Yuste-Tirados I., Zanón R., Catalán-Martinez D., Beeaff D., Morejudo S.H., Vestre P.K., Norby T., Haugsrud R. Thermoelectrochemical production of compressed hydrogen from methane with near-zero energy loss // Nature Energy. 2017. V. 2. № 12. P. 923–931. https://doi.org/10.1038/s41560-017-0029-4
- Løken A., Ricote S., Wachowski S. Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes // Crystals. 2018. V. 8. № 9. P. 365. https://doi.org/10.3390/cryst8090365
- Lei L., Zhang J., Yuan Z., Liu J., Ni M., Chen F. Progress report on proton conducting solid oxide electrolysis cells // Advanced Functional Materials. 2019. V. 29. № 37. ID 1903805. https://doi.org/10.1002/adfm.201903805
- Medvedev D. Trends in research and development of protonic ceramic electrolysis cells // Int. J. of Hydrogen Energy. 2019. V. 44. № 49. P. 26711–26740. https://doi.org/10.1016/j.ijhydene.2019.08.130
- Duan C., Huang J., Sullivan N., O’Hayre R. Proton-conducting oxides for energy conversion and storage // Applied Physics Reviews. 2020. V. 7. № 1. ID 011314. https://doi.org/10.1063/1.5135319
- Kim J., Sengodan S., Kim S., Kwon O., Bu Y., Kim G. Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage // Renewable and Sustainable Energy Reviews. 2019. V. 109. P. 606–618. https://doi.org/10.1016/j.rser.2019.04.042
- Chiara A., Giannici F., Pipitone C., Longo A., Aliotta C., Gambino M., Martorana A. Solid–solid interfaces in protonic ceramic devices: a critical review // ACS Applied Materials & Interfaces. 2020. V. 12. № 50. P. 55537–55553. https://doi.org/10.1021/acsami.0c13092
- Ortiz-Vitoriano N., Drewett N.E., Gonzalo E., Rojo T. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries // Energy & Environmental Science. 2017. V. 10. № 5. P. 1051–1074. https://doi.org/10.1039/C7EE00566K
- Terada N., Yanagi T., Arai S., Yoshikawa M., Ohta K., Nakajima N., Yanai A., Arai N. Development of lithium batteries for energy storage and EV applications // J. of Power Sources. 2001. V. 100. № 1–2. P. 80–92. https://doi.org/10.1016/S0378-7753(01)00885-0
- Li W., Dahn J.R., Wainwright D.S. Rechargeable lithium batteries with aqueous electrolytes // Science. 1994. V. 264. № 5162. P. 1115–1118. https://doi.org/10.1126/science.264.5162.1115
- Liu D., Zhu W., Trottier J., Gagnon C., Barray F., Guerfi A., Mauger A., Groult H., Julien C.M., Goodenough J.B. Spinel materials for high-voltage cathodes in Li-ion batteries // Rsc Advances. 2014. V. 4. № 1. P. 154–167. https://doi.org/10.1039/C3RA45706K
- Campanella D., Belanger D., Paolella A. Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries // J. of Power Sources. 2021. V. 482. P. 228949. https://doi.org/10.1016/j.jpowsour.2020.228949
- Brissot C., Rosso M., Chazalviel J.-N., Lascaud S. Dendritic growth mechanisms in lithium/polymer cells // J. of power sources. 1999. V. 81. P. 925–929. https://doi.org/10.1016/S0378-7753(98)00242-0
- Snyder J.F., Carter R.H., Wetzel E.D. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries // Chemistry of materials. 2007. V. 19. № 15. P. 3793–3801. https://doi.org/10.1021/cm070213o
- Murugan R., Thangadurai V., Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 // Angewandte Chemie-International Edition in English. 2007. V. 46. № 41. P. 7778. https://doi.org/10.1002/anie.200701144
- Inaguma Y., Liquan C., Itoh M., Nakamura T., Uchida T., Ikuta H., Wakihara M. High ionic conductivity in lithium lanthanum titanate // Solid State Communications. 1993. V. 86. № 10. P. 689–693. https://doi.org/10.1016/0038-1098(93)90841-A
- Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., Kawamoto K. A lithium superionic conductor // Nature materials. 2011. V. 10. № 9. P. 682–686. https://doi.org/10.1038/nmat3066
- Braga M.H., Murchison A.J., Ferreira J.A., Singh P., Goodenough J.B. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells // Energy & Environmental Science. 2016. V. 9. № 3. P. 948–954. https://doi.org/10.1039/C5EE02924D
- Fu J. Fast Li+ ion conducting glass-ceramics in the system Li2O––– // Solid State Ionics. 1997. V. 104. № 3–4. P. 191–194. https://doi.org/10.1016/S0167-2738(97)00434-7
- Fu J. Superionic conductivity of glass-ceramics in the system --- // Solid State Ionics. 1997. V. 96. № 3–4. P. 195–200. https://doi.org/10.1016/S0167-2738(97)00018-0
- Dhanushkodi S.R., Capitanio F., Biggs T., Merida W. Understanding flexural, mechanical and physico-chemical properties of gas diffusion layers for polymer membrane fuel cell and electrolyzer systems // Int. J. of Hydrogen Energy. 2015. V. 40. № 46. P. 16846–16859. https://doi.org/10.1016/j.ijhydene.2015.07.033
- Jayakumar A., Singamneni S., Ramos M., Al-Jumaily A.M., Pethaiah S.S. Manufacturing the gas diffusion layer for PEM fuel cell using a novel 3D printing technique and critical assessment of the challenges encountered // Materials. 2017. V. 10. № 7. ID 796. https://doi.org/10.3390/ma10070796
- Omrani R., Shabani B. Gas diffusion layers in fuel cells and electrolysers: A novel semi-empirical model to predict electrical conductivity of sintered metal fibres // Energies. 2019. V. 12. № 5. P. 855. https://doi.org/10.3390/en12050855
- Ozden A., Alaefour I.E., Shahgaldi S., Li X., Colpan C.O., Hamdullahpur F. Gas diffusion layers for PEM fuel cells: ex-and in-situ characterization // Exergetic, energetic and environmental dimensions. 2018. P. 695–727. https://doi.org/10.1016/B978-0-12-813734-5.00040-8
- Moni P., Deschamps A., Schumacher D., Rezwan K., Wilhelm M. A new silicon oxycarbide based gas diffusion layer for zinc-air batteries // J. of colloid and interface science. 2020. V. 577. P. 494–502. https://doi.org/10.1016/j.jcis.2020.05.041
- Adamson D.T., Piña E.A., Cartwright A.E., Rauch S.R., Anderson R.H., Mohr T., Connor J.A. 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule // Science of the Total Environment. 2017. V. 596. P. 236–245. https://doi.org/ 10.1016/j.scitotenv.2017.04.085
- Karges U., Becker J., Püttmann W. 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume // Science of the Total Environment. 2018. V. 619. P. 712–720. https://doi.org/10.1016/j.scitotenv.2017.11.043
- McElroy A.C., Hyman M.R., Knappe D.R.U. 1, 4-Dioxane in drinking water: emerging for 40 years and still unregulated //Current opinion in environmental science & health. 2019. V. 7. P. 117–125. https://doi.org/10.1016/j.coesh.2019.01.003
- Sun M., Lopez-Velandia C., Knappe D.R.U. Determination of 1, 4-dioxane in the Cape Fear River watershed by heated purge-and-trap preconcentration and gas chromatography–mass spectrometry // Environmental Science & Technology. 2016. V. 50. № 5. P. 2246–2254. https://doi.org/10.1021/acs.est.5b05875
- Tian G.-P., Wu Q.-Y., Li A., Wang W.-L., Hu H.-Y. Promoted ozonation for the decomposition of 1, 4-dioxane by activated carbon // Water Science and Technology: Water Supply. 2017. V. 17. № 2. P. 613–620. https://doi.org/10.2166/ws.2016.071
- Mao J., Quan X.,Wang J., Gao C., Chen S., Yu H., Zhang Y. Enhanced heterogeneous Fenton-like activity by Cu-doped perovskite for degradation of organic pollutants // Frontiers of Environmental Science & Engineering. 2018. V. 12. P. 1–10. https://doi.org/ 10.1007/s11783-018-1060-9
- Varanasi L., Coscarelli E., Khaksari M., Mazzoleni L.R., Minakata D. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes // Water Research. 2018. V. 135. P. 22–30. https://doi.org/10.1016/j.watres.2018.02.015
- Wei S., Zeng C., Lu Y., Liu G., Luo H., Zhang R. Degradation of antipyrine in the Fenton-like process with a La-doped heterogeneous catalyst // Frontiers of Environmental Science & Engineering. 2019. V. 13. P. 1–11. https://doi.org/10.1007/s11783-019-1149-9
- Xue S., Sun S., Qing W., Huang T., Liu W., Liu C., Yao H., Zhang W. Experimental and computational assessment of 1, 4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process //Frontiers of Environmental Science & Engineering. 2021. V. 15. P. 1–13. https://doi.org/10.1007/s11783-020-1341-y
- Badwal S.P.S., Giddey S., Munnings C., Kulkarni A. Review of progress in high temperature solid oxide fuel cells // ChemInform. 2014. V. 50. № 1. P. 23–37. https://doi.org/ 10.1002/chin.201531316
- Dogdibegovic E., Wang R., Lau G.Y., Tucker M.C. High performance metal-supported solid oxide fuel cells with infiltrated electrodes // J. of Power Sources. 2019. V. 410. P. 91–98. https://doi.org/10.1016/j.jpowsour.2018.11.004
- Do M.H., Ngo H.H., Guo W., Chang S.W., Nguyen D.D., Liu Y., Varjani S., Kumar M. Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review // Science of the Total Environment. 2020. V. 712. ID 135612. https://doi.org/10.1016/j.scitotenv.2019.135612
- Gajda I., Obata O., Salar-Garcia M.J., Greenman J., Ieropoulos I.A. Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations // Bioelectrochemistry. 2020. V. 133. ID 107459. https://doi.org/10.1016/j.bioelechem.2020.107459
- Rodríguez J., Mais L., Campana R., Piroddi L., Mascia M., Gurauskis J., Vacca A., Palmas S. Comprehensive characterization of a cost-effective microbial fuel cell with Pt-free catalyst cathode and slip-casted ceramic membrane // Int. J. of Hydrogen Energy. 2021. V. 46. № 51. P. 26205–26223. https://doi.org/10.1016/j.ijhydene.2021.01.066
- Koros W.J., Ma Y.H., Shimidzu T. Terminology for membranes and membrane processes (IUPAC Recommendations 1996) // Pure and Applied Chemistry. 1996. V. 68. № 7. P. 1479–1489. https://doi.org/10.1351/pac199668071479
- Hsieh H.P., Bhave R.R., Fleming H.L. Microporous alumina membranes // J. of membrane science. 1988. V. 39. № 3. P. 221–241. https://doi.org/10.1016/S0376-7388(00)80931-X
- Dyer P.N., Richards R.E., Russek S.L., Taylor D.M. Ion transport membrane technology for oxygen separation and syngas production // Solid State Ionics. 2000. V. 134. № 1–2. P. 21–33. https://doi.org/10.1016/S0167-2738(00)00710-4
- Li S., Baeyens J., Dewil R., Appels L., Zhang H., Deng Y. Advances in rigid porous high temperature filters // Renewable and Sustainable Energy Reviews. 2021. V. 139. ID 110713. https://doi.org/10.1016/j.rser.2021.110713
- Deng Y., Ansart R., Baeyens J., Zhang H. Flue gas desulphurization in circulating fluidized beds // Energies. 2019. V. 12. № 20. ID 3908. https://doi.org/10.3390/en12203908
- Sobolewski A., Iluk T., Szul, M. SRF gasification in GazEla pilot fixed bed gas generator for CHP units // J. Power Technol. 2017. V. 97. № 2. P.158–162. https://papers.itc.pw.edu.pl/index.php/JPT/article/view/984
- Szul M., Iluk T., Sobolewski A. High-temperature, dry scrubbing of syngas with use of mineral sorbents and ceramic rigid filters // Energies. 2020. V. 13. № 6. P. 1528. https://doi.org/10.3390/en13061528
- Eterigho-Ikelegbe O., Bada S.O., Daramola M.O. Preparation and evaluation of nanocomposite sodalite/α- tubular membranes for H2/CO2 separation // Membranes. 2020. V. 10. № 11. V. 312. https://doi.org/10.3390/membranes10110312
- Dong H., Li J., Li Y., Hu L., Luo D. Improvement of catalytic activity and stability of lipase by immobilization on organobentonite // Chem. Engineering J. 2012. V. 181. P. 590–596. https://doi.org/10.1016/j.cej.2011.11.095
- Hofs B., Ogier J., Vries D., Beerendonk E.F., Cornelissen E.R. Comparison of ceramic and polymeric membrane permeability and fouling using surface water // Separation and Purification Technology. 2011. V. 79. № 3. P. 365–374. https://doi.org/10.1016/j.seppur.2011.03.025
- Bensadok K., Belkacem M., Nezzal G. Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation // Desalination. 2007. V. 206. № 1–3. P. 440–448. https://doi.org/10.1016/j.desal.2006.02.070
- Binner E.R., Robinson J.P., Kingman S.W., Lester E.H., Azzopardi B.J., Dimitrakis G., Briggs J. Separation of oil/water emulsions in continuous flow using microwave heating // Energy & Fuels. 2013. V. 27. № 6. P. 3173–3178. https://doi.org/10.1021/ef400634n
- Stack L.J., Carney P.A., Malone H.B.,Wessels T.K. Factors influencing the ultrasonic separation of oil-in-water emulsions // Ultrasonics sonochemistry. 2005. V. 12. № 3. P. 153–160. https://doi.org/10.1016/j.ultsonch.2003.10.008
- Zhong J., Sun X., Wang C. Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration // Separation and Purification Technology. 2003. V. 32. № 1–3. P. 93–98. https://doi.org/10.1016/S1383-5866(03)00067-4
- Koros W.J., Mahajan R. Pushing the limits on possibilities for large scale gas separation: which strategies? // J. of Membrane Science. 2000. V. 175. № 2. P. 181–196. https://doi.org/10.1016/S0376-7388(00)00418-X
- Hubadillah S.K., Othman M.H.D., Rahman M.A., Ismail A.F., Jaafar J. Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater // Arabian J. of Chemistry. 2020. V. 13. № 1. P. 2349–2367. https://doi.org/10.1016/j.arabjc.2018.04.018
- Liu J., Zhang Y., Hong Z., Liu H., Wang Sh., Gu X. Fabrication of dual-layer hollow fiber ceramic composite membranes by Co-extrusion // J. of Inorg. materials. 2020. V. 35. № 12. P. 1333–1339. https://doi.org/10.15541/jim20200182
- Raji Y.O., Othman M.H.D., Nordin N.A.H.S.M., ShengTai Z., Usman J., Mamah S.C., Ismail A.F., Rahman M.A., Jaafar J. Fabrication of magnesium bentonite hollow fibre ceramic membrane for oil-water separation // Arabian J. of Chemistry. 2020. V. 13. № 7. P. 5996–6008. https://doi.org/10.1016/j.arabjc.2020.05.001
- Kamarudin N.H., Harun Z., Othman M.H.D., Abdullahi T., Syamsul Bahri S., Kamarudin N.H., Yunos M.Z., Wan Salleh W.N. Waste environmental sources of metakaolin and corn cob ash for preparation and characterisation of green ceramic hollow fibre membrane (h-MCa) for oil-water separation // Ceramics Int. J. 2020. V. 46. № 2. P. 1512–1525. https://doi.org/10.1016/j.ceramint.2019.09.118
- Shuit S.H., Ong Y.T., Lee K.T., Subhash B., Tan S.H. Membrane technology as a promising alternative in biodiesel production: a review // Biotechnology advances. 2012. V. 30. № 6. P. 1364–1380. https://doi.org/10.1016/j.biotechadv.2012.02.009
- Atadashi I.M., Aroua M.K., Aziz A.A. Biodiesel separation and purification: a review // Renewable Energy. 2011. V. 36. № 2. P. 437–443. https://doi.org/10.1016/j.renene.2010.07.019
- di Bitonto L., Pastore C. Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel // Renewable Energy. 2019. V. 143. P. 1193–1200. https://doi.org/10.1016/j.renene.2019.05.100
- Fonseca J.M., Teleken J.G., de Cinque Almeida V., da Silva C. Biodiesel from waste frying oils: Methods of production and purification // Energy Conversion and Management. 2019. V. 184. P. 205–218. https://doi.org/10.1016/j.enconman.2019.01.061
- Moreira W.M., da Igreja G., Viotti P.V., Baptista C.M.S.G., Gimenes M.L., Gomes M.C.S., Pereira N.C. Soybean biodiesel purification through an acid‐system membrane technology: effect of oil quality and separation process parameters // J. of Chem. Tech. & Biotechnology. 2020. V. 95. № 7. P. 1962–1969. https://doi.org/ 10.1002/jctb.6395
- Wang X.-L., Zhang Y.-T., Gao B., Zhang C., Gu X.-H. Preparation and characterization of NaA zeolite membranes on inner-surface of four-channel ceramic hollow fibers // J. Inorg. Mater. 2018. V. 33. P. 339–344. https://doi.org/10.15541/jim20170174
- Fisher J.B., Melton F., Middleton E., Hain C., Anderson M., Allen R., McCabe M. F., Hook S., Baldocchi D., Townsend P.A. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources // Water resources research. 2017. V. 53. № 4. P. 2618–2626. https://doi.org/10.1002/2016WR020175
- Drioli E., Ali A., Macedonio F. Membrane distillation: Recent developments and perspectives // Desalination. 2015. V. 356. P. 56–84. https://doi.org/10.1016/j.desal.2014.10.028
- Khayet M. Membranes and theoretical modeling of membrane distillation: A review // Advances in colloid and interface science. 2011. V. 164. № 1–2. P. 56–88. https://doi.org/10.1016/j.cis.2010.09.005
- Wang P., Chung T.S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring // J. of Membrane Science. 2015. V. 474. P. 39–56. https://doi.org/10.1016/j.memsci.2014.09.016
- Hoppach D., Werzner E., Demuth C., Löwer E., Lehmann H., Ditscherlein L., Ditscherlein R., Peuker U.A., Ray S. Experimental investigations of the depth filtration inside open‐cell foam filters supported by high‐resolution computed tomography scanning and pore‐scale numerical simulations // Advanced Engineering Materials. 2020. V. 22. № 2. ID 1900761. https://doi.org/10.1002/adem.201900761
- Demir A. Fabrication of alumina ceramic filters and performance tests for aluminium castings // Polish Acad Sciences Inst Physics. 2018. https://doi.org/10.12693/APhysPolA.134.332
- Damoah L.N.W., Zhang L. AlF3 reactive foam filter for the removal of dissolved impurities from molten aluminum: Preliminary results // Acta Materialia. 2011. V. 59. № 3. P. 896–913. https://doi.org/10.1016/j.actamat.2010.09.064
- Bao S., Syvertsen M., Nordmark A., Kvithyld A., Engh T., Tangstad M. Plant scale investigation of liquid aluminium filtration by and SiC ceramic foam filters // Light Metals 2013. 2016. Р. 981–986. https://doi.org/10.1007/978-3-319-65136-1_166
- Emmel M., Aneziris C.G., Sponza F., Dudczig S., Colombo P. In situ spinel formation in –MgO–C filter materials for steel melt filtration // Ceramics International. 2014. V. 40. № 8. P. 13507–13513. https://doi.org/10.1016/j.ceramint.2014.05.033
- Bavand-Vandchali M., Sarpoolaky H., Golestani-Fard F., Rezaie H.R. Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO–C refractories matrix // Ceramics International. 2009. V. 35. № 2. P. 861–868. https://doi.org/10.1016/j.jeurceramsoc.2007.07.009
- Mazzoni A.D., Sainz M. A., Caballero A., Aglietti E.F. Formation and sintering of spinels () in reducing atmospheres // Materials chemistry and physics. 2003. V. 78. № 1. P. 30–37. https://doi.org/10.1016/S0254-0584(02)00333-4
- Sainz M.A., Mazzoni A.D., Aglietti E.F., Caballero A. Thermochemical stability of spinel (MgO·) under strong reducing conditions // Materials Chemistry and physics. 2004. V. 86. № 2–3. P. 399–408. https://doi.org/ 10.1016/j.matchemphys.2004.04.007
- Tripathi H.S., Ghosh A. Spinelisation and properties of ––C refractory: Effect of MgO and reactants // Ceramics International. 2010. V. 36. № 4. P. 1189–1192. https://doi.org/10.1016/j.ceramint.2009.12.011
- Khanna R., Kongkarat S., Seetharaman S., Sahajwalla V. Carbothermic reduction of alumina at 1823 K in the presence of molten steel: a sessile drop investigation // ISIJ international. 2012. V. 52. № 6. P. 992–999. https://doi.org/10.2355/isijinternational.52.992
- Gehre P., Schmidt A., Dudczig S., Hubálková J., Aneziris C.G., Child N., Delaney I., Rancoule G., DeBastiani D. Interaction of slip‐and flame‐spray coated carbon‐bonded alumina filters with steel melts // J. of Am. Chem. Soc. 2018. V. 101. № 7. P. 3222–3233. https://doi.org/10.1111/jace.15431
- Mkandawire T., Banda E. Assessment of drinking water quality of Mtopwa village in Bangwe Township, Blantyre // Desalination. 2009. V. 248. № 1–3. P. 557–561. https://doi.org/10.1016/j.desal.2008.05.101
- Abebe L.S., Chen X., Sobsey M.D. Chitosan coagulation to improve microbial and turbidity removal by ceramic water filtration for household drinking water treatment // Int. J. of Environmental Research and Public Health. 2016. V. 13. № 3. P. 269. https://doi.org/10.3390/ijerph13030269
- Huang J., Huang G., An C., He Y., Yao Y., Zhang P., Shen J. Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions // Environmental Pollution. 2018. V. 238. P. 52–62. https://doi.org/10.1016/j.envpol.2018.03.008
- Farrow C., McBean E., Huang G., Yang A., Wu Y., Liu Z., Dai Z., Fu H., Cawte T., Li Y. Ceramic water filters: A point-of-use water treatment technology to remove bacteria from drinking water in Longhai City, Fujian Province // J. of Environmental Informatics. 2018. V. 32. № 2. P. 63–68. https://doi.org/10.3808/jei.201800388
- Thuy P.T., Anh N.V., Van der Bruggen B. Low-cost technologies for safe drinking water in south-east asia: overview and application to the north of vietnam // Environmental Engineering and Management J. 2013. V. 12. № 11. P. 2051–2060. https://doi.org/10.30638/eemj.2013.256
- Diana S., Fauzan R., Elfiana E. Removing Escherichia coli bacteria in river water using ceramic membrane from mixed clay and fly ash material // IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019. V. 536. № 1. ID 012089. https://doi.org/10.1088/1757-899X/536/1/012089
- Murphy H.M., McBean E.A., Farahbakhsh K. A critical evaluation of two point-of-use water treatment technologies: can they provide water that meets WHO drinking water guidelines? // J. of water and health. 2010. V. 8. № 4. P. 611–630. https://doi.org/ 10.2166/wh.2010.156
- Liu Y., Zhu W., Guan K., Peng C., Wu J. Preparation of high permeable alumina ceramic membrane with good separation performance via UV curing technique // RSC advances. 2018. V. 8. № 24. P. 13567–13577. https://doi.org/10.1039/C7RA13195J
- Zhao Y., Huang G., An C., Huang J., Xin X., Chen X., Hong Y., Song P. Removal of Escherichia Coli from water using functionalized porous ceramic disk filter coated with Fe/ nano-composites // J. of Water Process Engineering. 2020. V. 33. ID 101013. https://doi.org/10.1016/j.jwpe.2019.101013
- Pelaez M., Nolan N.T., Pillai S.C., Seery M.K., Falaras P., Kontos A.G., Dunlop P.S.M., Hamilton J.W.J., Byrne J.A., O’Shea K. A review on the visible light active titanium dioxide photocatalysts for environmental applications // Applied Catalysis B: Environmental. 2012. V. 125. P. 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036
- Diao Z.-H., Xu X.-R., Jiang D., Liu J.-J., Kong L.-J., Li G., Zuo L.-Z., Wu Q.-H. Simultaneous photocatalytic Cr(VI) reduction and ciprofloxacin oxidation over /Fe0 composite under aerobic conditions: performance, durability, pathway and mechanism // Chem. Engineering J. 2017. V. 315. P. 167–176. https://doi.org/10.1016/j.cej.2017.01.006
- Liu L., Chen F., Yang F., Chen Y. Photocatalytic degradation of 2, 4-dichlorophenol using nanoscale Fe/ // Chem. Engineering J. 2012. V. 181. P. 189–195. https://doi.org/ 10.1016/j.cej.2011.11.060
- Saifuddin S., Lisa A., Amalia Z., Faridah F., Elfiana E. Applications of micro size anorganic membrane of clay, zeolite and active carbon as filters for peat water purification // Journal of Physics: Conference Series. IOP Publishing, 2020. V. 1450. № 1. ID 012010. https://doi.org/10.1088/1742-6596/1450/1/012010
- Peng S., Chen Y., Jin X., Lu W., Gou M., Wei X., Xie J. Polyimide with half encapsulated silver nanoparticles grafted ceramic composite membrane: Enhanced silver stability and lasting anti‒biofouling performance // J. of Membrane Science. 2020. V. 611. ID 118340. https://doi.org/10.1016/j.memsci.2020.118340
- Awang Chee D.N., Ismail A.F., Aziz F., Mohamed Amin M.A., Abdullah N. The influence of alumina particle size on the properties and performance of alumina hollow fiber as support membrane for protein separation // Separation and Purification Technology. 2020. V. 250. ID 117147. https://doi.org/10.1016/j.seppur.2020.117147
- Shi Y., Matsunaga T., Yamaguchi Y., Li Z., Gu X., Chen X. Long-term trends and spatial patterns of satellite-retrieved PM2. 5 concentrations in South and Southeast Asia from 1999 to 2014 // Science of the Total Environment. 2018. V. 615. P. 177–186. https://doi.org/10.1016/j.scitotenv.2017.09.241
- Saleem M., Krammer G. Optical in-situ measurement of filter cake height during bag filter plant operation // Powder Technology. 2007. V. 173. № 2. P. 93–106. https://doi.org/10.1016/j.powtec.2006.12.008
- Zhou R., Shen H., Zhao M. Simulation studies on protector of pulse-jet cleaning filter bag // Energy Procedia. 2012. V. 16. P. 426-431. https://doi.org/10.1016/j.egypro.2012.01.069
- Gallimberti I. Recent advancements in the physical modelling of electrostatic precipitators // J. of electrostatics. 1998. V. 43. № 4. P. 219–247. https://doi.org/ 10.1016/S0304-3886(98)00009-6
- Song X., Jian B., Jin J. Preparation of porous ceramic membrane for gas-solid separation // Ceramics International. 2018. V. 44. № 16. P. 20361–-20366. https://doi.org/10.1016/j.ceramint.2018.08.026
- Hwa L.C., Rajoo S., Noor A.M., Ahmad N., Uday M.B. Recent advances in 3D printing of porous ceramics: A review // Current Opinion in Solid State and Materials Science. 2017. V. 21. № 6. P. 323–347. https://doi.org/10.1016/j.cossms.2017.08.002
- Zocca A., Elsayed H., Bernardo E., Gomes C.M., Lopez-Heredia M.A., Knabe C., Colombo P., Günster J. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder // Biofabrication. 2015. V. 7. № 2. ID 025008. https://doi.org/10.1088/1758-5090/7/2/025008
- Ben Y., Zhang L., Wei S., Zhou T., Li Z., Yang H., Wong C., Chen H. Improved forming performance of β-TCP powders by doping silica for 3D ceramic printing // J. of Materials Science: Materials in Electronics. 2017. V. 28. P. 5391–5397. https://doi.org/10.1007/s10854-016-6199-1
- Eckel Z.C., Zhou C., Martin J.H., Jacobsen A.J., Carter W.B., Schaedler T.A. Additive manufacturing of polymer-derived ceramics // Science. 2016. V. 351. № 6268. P. 58-62. https://doi.org/10.1126/science.aad2688
- Li S., Duan W., Zhao T., Han W., Wang L., Dou R., Wang G. The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology // J. of the European Ceramic Society. 2018. V. 38. № 14. P. 4597–4603. https://doi.org/10.1016/j.jeurceramsoc.2018.06.046
- An D., Li H., Xie Z., Zhu T., Luo X., Shen Z., Ma J. Additive manufacturing and characterization of complex Al2O3 parts based on a novel stereolithography method // Intern. J. of Applied Ceramic Technology. 2017. V. 14. № 5. P. 836–844. https://doi.org/10.1111/ijac.12721
- Doreau F., Chaput C., Chartier T. Stereolithography for ceramic part manufacturing // Ceramics–Processing, Reliability, Tribology and Wear. 2000. V. 12. P. 69–74. https://doi.org/10.1002/3527607293.ch12
- Mei H., Huang W., Zhao Y., Cheng L. Strengthening three‐dimensional printed ultra‐light ceramic lattices // J. of the Am. Ceramic Soc. 2019. V. 102. № 9. P. 5082–5089. https://doi.org/10.1111/jace.16403
- Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges // Composites Part B: Engineering. 2018. V. 143. P. 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
- Owen D., Hickey J., Cusson A., Ayeni O.I., Rhoades J., Deng Y., Zhang Y., Wu L., Park H.-Y., Hawaldar N. 3D printing of ceramic components using a customized 3D ceramic printer // Progress in additive manufacturing. 2018. V. 3. P. 3–9. https://doi.org/10.1007/s40964-018-0037-3
- Mei H., Tan Y., Huang W., Chang P., Fan Y., Cheng L. Structure design influencing the mechanical performance of 3D printing porous ceramics // Ceramics International. 2021. V. 47. № 6. P. 8389–8397. https://doi.org/10.1016/j.ceramint.2020.11.203
- Yuan L., Jin E., Li C., Liu Z., Tian C., Ma B., Yu J. Preparation of calcium hexaluminate porous ceramics by novel pectin based gelcasting freeze-drying method // Ceramics International. 2021. V. 47. № 7. P. 9017–9023. https://doi.org/10.1016/j.ceramint.2020.12.024
- Al-Jawoosh S., Ireland A., Su B. Characterisation of mechanical and surface properties of novel biomimetic interpenetrating alumina-polycarbonate composite materials // Dental Materials. 2020. V. 36. № 12. P. 1595–1607. https://doi.org/10.1016/j.dental.2020.09.016
- Arici S., Regan D. Alternatives to ceramic brackets: the tensile bond strengths of two aesthetic brackets compared ex vivo with stainless steel foil-mesh bracket bases // British journal of orthodontics. 1997. V. 24. № 2. P. 133–137. https://doi.org/10.1093/ortho.24.2.133
- Faltermeier A., Behr M., Müßig D. In vitro colour stability of aesthetic brackets // European J. of Orthodontics. 2007. V. 29. № 4. P. 354–358. https://doi.org/10.1093/ejo/cjm020
- Feldner J.C., Sarkar N.K., Sheridan J.J., Lancaster D.M. In vitro torque-deformation characteristics of orthodontic polycarbonate brackets // Am. J. of Orthodontics and Dentofacial Orthopedics. 1994. V. 106. № 3. P. 265–272. https://doi.org/10.1016/S0889-5406(94)70046-X
- Göhring T.N., Gallo L., Lüthy H. Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on the flexural strength of veneering composite // Dental Materials. 2005. V. 21. № 8. P. 761–772. https://doi.org/ 10.1016/j.dental.2005.01.013
- Eliades T. Orthodontic materials research and applications. Рart 2. Current status and projected future developments in materials and biocompatibility // Am. J. of Orthodontics and Dentofacial Orthopedics. 2007. V. 131. № 2. P. 253–262. https://doi.org/10.1016/j.ajodo.2005.12.029
- Karamouzos A., Athanasiou A.E., Papadopoulos M.A. Clinical characteristics and properties of ceramic brackets: a comprehensive review //American journal of orthodontics and dentofacial orthopedics. 1997. V. 112. № 1. P. 34–40. https://doi.org/10.1016/S0889-5406(97)70271-3
- Meguro D., Hayakawa T., Kawasaki M., Kasai K. Shear bond strength of calcium phosphate ceramic brackets to human enamel // Angle Orthodontist. 2006. V. 76. № 2. P. 301–305. https://doi.org/10.1043/0003-3219(2006)076 [0301:SBSOCP]2.0.CO;2
- Buzzitta V.A.J., Hallgren S.E., Powers J.M. Bond strength of orthodontic direct-bonding cement-bracket systems as studied in vitro // Am. J. of Orthodontics. 1982. V. 81. № 2. P. 87–92. https://doi.org/10.1016/0002-9416(82)90031-8
- Douglass J.B. Enamel wear caused by ceramic brackets // American Journal of Orthodontics and Dentofacial Orthopedics. 1989. V. 95. № 2. P. 96–98. https://doi.org/ 10.1016/0889-5406(89)90387-9
- Qin H., Li Y., Nie X., Yan M., Jiang P., Xue W. Combined effect of Fe-Si alloys and carbon on Si3N4 stability at elevated temperatures // Ceramics International. 2019. V. 45. № 3. P. 3290–3296. https://doi.org/10.1016/j.ceramint.2018.10.238
- Yuan Y., Li Z., Cao L., Tang B., Zhang S. Modification of ceramic powders and fabrication of /PTFE composite substrate with high thermal conductivity // Ceramics International. 2019. V. 45. № 13. P. 16569–16576. https://doi.org/10.1016/j.ceramint.2019.05.194
- Zeuner M., Pagano S., Schnick W. Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity // Ceramics Science and Technology. 2013. P. 373–413. https://doi.org/ 10.1002/9783527631971.ch10
- Li B., Li G., Chen J., Chen H., Xing X., Hou X., Li Y. Formation mechanism of elongated β–Si3N4 crystals in Fe–Si3N4 composite via flash combustion // Ceramics International. 2018. V. 44. № 8. P. 9395–9400. https://doi.org/10.1016/j.ceramint.2018.02.155
- Zhang T., Kong L., Dai Y., Yue X., Rong J., Qiu F., Pan J. Enhanced oils and organic solvents absorption by polyurethane foams composites modified with nanowires // Chemical Engineering J.. 2017. V. 309. P. 7–14. https://doi.org/ 10.1016/j.cej.2016.08.085
- Yue X., Zhang T., Yang D., Qiu F. Fabrication of flexible ceramic membranes derived from hard and soft nanowires // Ceramics International. 2020. V. 46. № 6. P. 8478–8482. https://doi.org/10.1016/j.ceramint.2019.11.226
- Khachaturyan R., Zhukov S., Schultheiß J., Galassi C., Reimuth C., Koruza J., Von Seggern H., Genenko Y.A. Polarization-switching dynamics in bulk ferroelectrics with isometric and oriented anisometric pores // J. of Physics D: Applied Physics. 2016. V. 50. № 4. ID 045303. https://doi.org/10.1088/1361-6463/aa519c
- Bosse P.W., Challagulla K.S., Venkatesh T.A. Effects of foam shape and porosity aspect ratio on the electromechanical properties of 3-3 piezoelectric foams // Acta Materialia. 2012. V. 60. № 19. P. 6464–6475. https://doi.org/ 10.1016/j.actamat.2012.07.051
- Challagulla K.S., Venkatesh T.A. Electromechanical response of piezoelectric foams // Acta Materialia. 2012. V. 60. № 5. P. 2111–2127. https://doi.org/10.1016/j.actamat.2011.12.036
- Jiang Q.Y., Cross L.E. Effects of porosity on electric fatigue behaviour in PLZT and PZT ferroelectric ceramics // J. of materials science. 1993. V. 28. P. 4536–4543. https://doi.org/10.1007/BF01154968
- Curecheriu L., Lukacs V.A., Padurariu L., Stoian G., Ciomaga C.E. Effect of porosity on functional properties of lead-free piezoelectric BaZrО. 15Ti0. 85O3 porous ceramics // Materials. 2020. V. 13. № 15. P. 3324. https://doi.org/10.3390/ma13153324
- Gao H.B., Qu Z.G., Feng X.B., Tao W.Q. Methane/air premixed combustion in a two-layer porous burner with different foam materials // Fuel. 2014. V. 115. P. 154–161. https://doi.org/10.1016/j.fuel.2013.06.023
- Howell J.R., Hall M.J., Ellzey J.L. Combustion of hydrocarbon fuels within porous inert media // Progress in Energy and Combustion Science. 1996. V. 22. № 2. P. 121–145. https://doi.org/10.1016/0360-1285(96)00001-9
- Trimis D. Stabilized combustion in porous media-applications of the porous burner technology in energy-and heat-engineering // Fluids 2000 conference and exhibit. 2000. С. 2298. https://doi.org/10.2514/6.2000-2298
- Trimis D., Durst F. Combustion in a porous medium-advances and applications // Combustion science and technology. 1996. V. 121. № 1–6. P. 153–168. https://doi.org/10.1080/00102209608935592
- Zheng C.-H., Cheng L.-M., Li T., Luo Z.-Y., Cen K.-F. Filtration combustion characteristics of low calorific gas in SiC foams // Fuel. 2010. V. 89. № 9. P. 2331–2337. https://doi.org/10.1016/j.fuel.2009.12.020
- Bubnovich V., Hernandez H., Toledo, M., Flores C. Experimental investigation of flame stability in the premixed propane-air combustion in two-section porous media burner // Fuel. 2021. V. 291. ID 120117. https://doi.org/10.1016/j.fuel.2020.120117
- Hashemi S.A., Alsulaiei Z.M.A., Mollamahdi M. Experimental analysis of the effects of porous wall on flame stability and temperature distribution in a premixed natural gas/air combustion // Heat Transfer. 2020. V. 49. № 4. P. 2282–2296. https://doi.org/10.1002/htj.21720
- Coquard R., Rochais D., Baillis D. Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures: contribution to the special issue “materials in fire” Guest Editor K. Ghazi Wakili // Fire technology. 2012. V. 48. P. 699–732. https://doi.org/10.1007/s10694-010-0167-8
- Rashad A.M. Lightweight expanded clay aggregate as a building material–An overview // Construction and Building Materials. 2018. V. 170. P. 757–775. https://doi.org/10.1016/j.conbuildmat.2018.03.009
- Saremi O., Ghaani M.R., Keshavarz L. English Niall J. Application of Porous Ceramics. A. Uthaman et al. (eds.). Advanced Functional Porous Materials, Engineering Materials. Springer Nature Switzerland AG? 2022. P. 499–537. https://doi.org/10.1007/978-3-030-85397-6_17
Supplementary files
