Основные свойства, способы получения и направления применения пористых керамических материалов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В настоящей статье подробно рассмотрена современная классификация пористых керамических материалов, а также приведены описания различных подходов к их изготовлению и практическому применению. Проиллюстрированы перспективные пути научного и технологического развития для решения поставленных задач. Обзор предназначен для широкого круга специалистов, работающих в области материаловедения, мембранного разделения и гетерогенного катализа.

Full Text

Restricted Access

About the authors

А. С. Федотов

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Author for correspondence.
Email: alexey.fedotov@ips.ac.ru
ORCID iD: 0000-0002-8550-7921

д.х.н.

Russian Federation, Москва, 119991

Данил Юрьевич Грачев

Институт нефтехимического синтеза им. А.В. Топчиева РАН

Email: alexey.fedotov@ips.ac.ru
ORCID iD: 0000-0003-4548-6051

асп.

Russian Federation, Москва, 119991

Роман Дмитриевич Капустин

Институт структурной макрокинетики и проблем материаловедения РАН

Email: alexey.fedotov@ips.ac.ru
ORCID iD: 0000-0002-8932-7709

к.т.н.

Russian Federation, Черноголовка Московской обл., 142432

References

  1. Eom J.H., Kim Y.W., Raju S. Processing and properties of macroporous silicon carbide ceramics: A review // J. of Asian Ceramic Societies. 2013. V. 1. № 3. P. 220–242. https://doi.org/10.1016/j.jascer.2013.07.003
  2. Colombo P. In praise of pores // Science. 2008. V. 322. № 5900. P. 381–383. https://doi.org/10.1126/science.1162962
  3. Colombo P. Ceramic foams: fabrication, properties and applications // Key Engineering Materials. 2002. V. 206–213. P. 1913–1918. https://doi.org/10.4028/www.scientific.net/KEM. 206-213.1913
  4. Sakka Y., Tang F., Fudouzi H., Uchikoshi T. Fabrication of porous ceramics with controlled pore size by colloidal processing // Science and Technology of Advanced Materials. 2005. V. 6. № 8. P. 915. https://doi.org/10.1016/j.stam.2005.07.006
  5. Liu P.S., Chen G.F. Fabricating porous ceramics // Porous materials. 2014. P. 221–302. https://doi.org/ 10.1016/B978-0-12-407788-1.00005-8
  6. Ohji T., Fukushima M. Macro-porous ceramics: processing and properties // Int. Materials Reviews. 2012. V. 57. № 2. P. 115–131. https://doi.org/10.1179/1743280411Y.0000000006
  7. Studart A.R., Gonzenbach U.T., Tervoort E., Gauckler L.J. Processing routes to macroporous ceramics: a review // J. of the Am. Ceramic Soc. 2006. V. 89. № 6. P. 1771–1789. https://doi.org/10.1111/j.1551-2916.2006.01044.x
  8. Guzman I.Y. Certain principles of formation of porous ceramic structures. Properties andaplications (a review) // Glass and Ceramics. 2003. V. 60. P. 280–283. https://doi.org/10.1023/B:GLAC.0000008227.85944.64
  9. Gauckler L.J., Studart A.R., Tervoort E., Gonzenbach U.T., Akartuna I. Ultrastable particle-stabilized foams and emulsions // Patent USA № 897530. 2015. https://patents.google.com/patent/US8975301B2/encture, manufacturing, properties and applications. – John Wiley & Sons, 2006. https://doi.org/10.1002/3527606696
  10. Scheffler M., Colombo P. (ed.). Cellular ceramics: structure, manufacturing, properties and applications. – John Wiley & Sons, 2006. https://doi.org/10.1002/3527606696
  11. Pokhrel A., Seo D.N., Lee S.T., Kim I.J. Processing of porous ceramics by direct foaming: a review // J. of the Korean Ceramic Soc. 2013. V. 50. № 2. P. 93–102. https://doi.org/10.4191/kcers.2013.50.2.093
  12. Uthaman A., Lal H.M., Thomas S. Fundamentals of silver nanoparticles and their toxicological aspects // Polymer nanocomposites based on silver nanoparticles: synthesis, characterization and applications. 2021. P. 1–24. https://doi.org/10.1007/978-3-030-44259-0_1
  13. Lv Y., Liu H., Wang Z., Liu S., Hao L., Sang Y., Liu D., Wang J., Boughton R.I. Silver nanoparticle-decorated porous ceramic composite for water treatment // J. of Membrane Science. 2009. V. 331. № 1–2. P. 50–56. https://doi.org/10.1016/j.memsci.2009.01.007
  14. Lal H.M., Thomas S., Li T., Maria H.J. In: Polymer Nanocomposites Based on Silver Nanoparticles. Springer, 2021. P. 247–265. https://doi.org/ 10.1007/978-3-030-44259-0
  15. Al-Naib U.M.B. Introd. A brief introduction to porous ceramic. Recent advances in porous ceramics. IntechOpen, 2018. https://doi.org/10.5772/intechopen.74747
  16. Gaydardzhiev S., Gusovius H., Wilker V., Ay P. Gel-casted porous Al 2 O 3 ceramics by use of natural fibres as pore developers // J. of Porous Materials. 2008. V. 15. P. 475–480. https://doi.org/10.1007/s10934-007-9099-1
  17. German R.M., Suri P., Park S. J. Liquid phase sintering // J. of materials science. 2009. V. 44. P. 1–39. https://doi.org/10.1007/s10853-008-3008-0
  18. Misyura S.Y. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation // Scientific Reports. 2016. V. 6. № 1. P. 30324. https://doi.org/10.1038/srep30324
  19. Nishida T., Morimoto A., Yamamoto Y., Kubuki S. Waste water purification using new porous ceramics prepared by recycling waste glass and bamboo charcoal // Applied Water Science. 2017. V. 7. № 8. P. 4281–4286. https://doi.org/10.1007/s13201-017-0561-1
  20. Gregorová E., Pabst W. Porous ceramics prepared using poppy seed as a pore-forming agent // Ceramics International. 2007. V. 33. № 7. P. 1385–1388. https://doi.org/10.1016/j.ceramint.2006.05.019
  21. Mocciaro A., Lombardi M.B., Scian A.N. Ceramic material porous structure prepared using pore-forming additives // Refractories and Industrial Ceramics. 2017. V. 58. № 1. P. 65–68. https://doi.org/10.1007/s11148-017-0055-6
  22. Ribeiro G.C., Fortes B.A., Silva L.D., Castro J.A., Ribeiro S. Evaluation of mechanical properties of porous alumina ceramics obtained using rice husk as a porogenic agent // Cerâmica. 2019. V. 65. P. 70–74. https://doi.org/10.1590/0366-6913201965S12604
  23. Yao X.M., Tan H.T., Jiang D.L. Preparation of porous hydroxyapatite ceramics // J. Inorg. Mater. 2000. V. 15. P. 467–472. https://doi.org/10.3321/j.issn:1000-324X.2000.03.016
  24. Bowden M.E., Rippey M.S. Porous ceramics formed using starch consolidation // Key Engineering Materials. 2002. V. 206. P. 1957–1960. https://doi.org/10.4028/www.scientific.net/KEM.206-213.1957
  25. Karl S., Somers A.V. Method of making porous ceramic articles // Patent USA № 3090094. 1963. https://patents.google.com/patent/US3090094A/en
  26. Zhu X.W., Jiang D.L. The Polymeric sponge impregnation process. A Type of economic and suitable process for preparing porous ceramics // Bull. Chin. Ceram. Soc. 2000. V. 19. № 3. P. 45–51. https://doi.org/ 10.3969/j.issn.1001-1625.2000.03.012
  27. Montanaro L., Jorand Y., Fantozzi G., Negro A. Ceramic foams by powder processing // Journal of the European Ceramic Society. 1998. V. 18. № 9. P. 1339–1350. https://doi.org/10.1016/S0955-2219(98)00063-6
  28. Wen Z., Han Y., Liang L., Li J. Preparation of porous ceramics with controllable pore sizes in an easy and low-cost way // Materials characterization. 2008. V. 59. № 9. P. 1335–1338. https://doi.org/ 10.1016/j.matchar.2007.11.010
  29. Hirschfeld D.A., Li T.K., LIu D.M. Processing of porous oxide ceramics // Key Engineering Materials. 1995. V. 115. P. 65–80. https://doi.org/10.4028/www.scientific.net/KEM. 115.65
  30. Yoshino A., Iwami I. Inorganic foam and preparation thereof // Patent USA № 4207113. 1980. https://patents.google.com/patent/US4207113A/en
  31. Fujiu T., Messing G.L., Huebner W. Processing and properties of cellular silica synthesized by foaming sol‐gels // J. of the Am. Ceramic Soc. 1990. V. 73. № 1. P. 85–90. https://doi.org/10.1111/j.1151-2916.1990.tb05095.x
  32. Nettleship I. Applications of porous ceramics // Key Engineering Materials. 1996. V. 122. P. 305–324. https://doi.org/10.4028/www.scientific.net/KEM. 122-124.305
  33. Velev O.D., Kaler E.W. Structured porous materials via colloidal crystal templating: from inorganic oxides to metals //Advanced Materials. 2000. V. 12. 7. P. 531–534. https://doi.org/10.1002/(SICI)1521-4095(200004) 12:7<531::AID-ADMA531>3.0.CO;2-S
  34. Brown J.J., Hirschfeld D.A., Li T.K. Alkalai corrosion resistant coatings and ceramic foams having a superfine cell structure and method of processing // Patent USA № 5268199 США. 1993. https://vtechworks.lib.vt.edu/server/api/core/bitstreams/bda1b5f0-f39c-4437-96d7-5193f254c4fd/content
  35. Hirschfeld D.A., Li T.K., Liu D.M. Processing of porous oxide ceramics // Key Eng. Mater. 1996. V. 115. P. 65–80. https://doi.org/10.4028/www.scientific.net/KEM. 115.65
  36. Yanagisawa K., Ioku K., Yamasaki N. Formation of anatase porous ceramics by hydrothermal hot‐pressing of amorphous titania spheres // J. of the Am. Ceramic Soc.. 1997. V. 80. № 5. P. 1303–1306. https://doi.org/10.1111/j.1151-2916.1997.tb02982.x
  37. Hooshmand S., Nordin J., Akhtar F. Porous alumina ceramics by gel casting: Effect of type of sacrificial template on the properties // Int. J. of Ceramic Engineering & Science. 2019. V. 1. № 2. P. 77–84. https://doi.org/10.1002/ces2.10013
  38. Uthaman A., Lal H. M., Li C., Xian G., Thomas S. Mechanical and water uptake properties of epoxy nanocomposites with surfactant-modified functionalized multiwalled carbon nanotubes // Nanomaterials. 2021. V. 11. № 5. P. 1234. https://doi.org/10.3390/nano11051234
  39. Wang H.T., Liu X.Q., Meng G.Y. Porous α- Al 2 O 3 ceramics prepared by gelcasting // Materials research bulletin. 1997. V. 32. № 12. P. 1705–1712. https://doi.org/10.1016/S0025-5408(97)00152-9
  40. Qian J.-M., Jin Z.-H., Qiao G.-J. Recent Progress in Research on Woodceramics // J. Inorg. Mater. 2003. V. 18. P. 716–724. https://doi.org/10.3321/j.issn:1000-324X.2003.04.002
  41. Hirschfeld D.A., Li T.K., Liu D.M. Processing of porous oxide ceramics // Key Eng. Mater. 1996. V. 115. P. 65–80. https://doi.org/ 10.4028/www.scientific.net/KEM.115.65
  42. Green D.J. Fabrication and mechanical properties of lightweight ceramics produced by sintering of hollow spheres // J. of Am. Ceramic Soc. 1985. V. 68. № 7. P. 403–409. https://doi.org/10.1111/j.1151-2916.1985.tb10153.x
  43. Zhang X., Huo W., Lu Y., Gan K., Yan S., Liu J., Yang J. Porous Si 3 N 4 -based ceramics with uniform pore structure originated from single-shell hollow microspheres // J. Мaterials Science. 2019. V. 54. P. 4484–4494. https://doi.org/10.1007/s10853-018-3118-2
  44. Yang J.F., Zhang G.J., Ohji T. Porosity and microstructure control of porous ceramics by partial hot pressing // J. Materials Research. 2001. V. 16. № 7. P. 1916–1918. https://doi.org/10.1557/JMR.2001.0262
  45. Dorozhkin S.V. Calcium orthophosphate-based bioceramics // Materials. 2013. V. 6. № 9. P. 3840–3942. https://doi.org/10.3390/ma6093840
  46. Sigl L.S., Kleebe H. Core/Rim structure of liquid‐phase‐sintered silicon carbide // J. Am. Ceram. Soc. 1993. V. 76. P. 773–776. https://doi.org/10.1111/j.1151-2916.1993.tb03677.x.
  47. Zhang Q., Yang X., Li P., Huang G., Feng S., Shen C., Han B., Zhang X., Jin F., Xu F., Lu T.J. Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation // Progress in Materials Science. 2015. V. 74. P. 332–400. https://doi.org/10.1016/j.pmatsci.2015.05.001
  48. Zhou Y., Zuo X.Q., Sun J.H., Mei J., Sun J.L. Effects of sintering parameters on the structures of Fe–Cr–Al extruded honeycombs // Materials Science and Engineering: A. 2007. V. 457. № 1–2. P. 329–333. https://doi.org/10.1016/j.msea.2006.12.117
  49. Obada D.O., Dodoo-Arhin D., Dauda M., Anafi F.O., Ahmed A.S., Ajayi O.A. Pressureless sintering and gas flux properties of porous ceramic membranes for gas applications // Results in physics. 2017. V. 7. P. 3838–3846. https://doi.org/ 10.1016/j.rinp.2017.10.002
  50. Ohji T., Fukushima M. Macro-porous ceramics: processing and properties // Int. Materials Reviews. 2012. V. 57. № 2. P. 115–131. https://doi.org/10.1179/1743280411Y.0000000006
  51. German R.M., Suri P., Park S.J. Liquid phase sintering // J. of materials science. 2009. Т. 44. P. 1–39. https://doi.org/10.1007/s10853-008-3008-0
  52. Misyura S.Y. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation // Scientific Reports. 2016. V. 6. № 1. P. 30324. https://doi.org/10.1038/srep30324
  53. He X., Su B., Tang Z., Zhao B., Wang X., Yang G., Qiu H., Zhang H., Yang J. The comparison of macroporous ceramics fabricated through the protein direct foaming and sponge replica methods // J. of Porous Materials. 2012. V. 19. P. 761–766. https://doi.org/10.1007/s10934-011-9528-z
  54. Miretzky P., Cirelli A.F. Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review //J. Hazardous Materials. 2010. V. 180. № 1–3. P. 1–19. https://doi.org/10.1016/j.jhazmat.2010.04.060
  55. Sarin V., Pant K.K. Removal of chromium from industrial waste by using eucalyptus bark // Bioresource technology. 2006. V. 97. № 1. P. 15–20. https://doi.org/10.1016/j.biortech.2005.02.010
  56. Dong H., Lin Z., Wan X., Feng L. Risk assessment for the mercury polluted site near a pesticide plant in Changsha, Hunan, China // Chemosphere. 2017. V. 169. P. 333–341. https://doi.org/10.1016/j.chemosphere.2016.11.084
  57. Rehman Z.U., Khan S., Brusseau M.L., Shah M.T. Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (Oat) biomass // J. of Hazardous Materials. 2000. V. 80. № 1–3. P. 175–188. https://doi.org/10.1016/S0304-3894(00)00301-0
  58. Rehman Z.U., Khan S., Brusseau M.L., Shah M.T. Lead and cadmium contamination and exposure risk assessment via consumption of vegetables grown in agricultural soils of five-selected regions of Pakistan // Chemosphere. 2017. V. 168. P. 1589–1596. https://doi.org/10.1016/j.che mosphere.2016.11.152
  59. Vo T.S., Hossain M.M., Jeong H.M., Kim K. Heavy metal removal applications using adsorptive membranes // Nano convergence. 2020. V. 7. № 1. P. 36. https://doi.org/10.1186/s40580-020-00245-4
  60. Pilicita V., Páez Fajardo G.J., Ormaza R., Piper L.F.J., Silva-Yumi J. Filter design for arsenic species in aqueous environments: An ab initio optimization of the absorbing capacity of magnetite-based arsenic filters // Materials Letters. 2021. V. 295. ID 129794. https://doi.org/10.1016/j.matlet.2021.129794
  61. USEPA. Federal Register, 2001. P. 6976–7066. https://www.govinfo.gov/app/details/FR-2001-01-22/01-1668
  62. Choi N.C., Cho K.H., Kim M.S., Park S.J., Lee C.G. A hybrid ion-exchange fabric/ceramic membrane system to remove As(V), Zn (ii), and turbidity from wastewater // Applied Sciences. 2020. V. 10. № 7. P. 2414. https://doi.org/10.3390/app10072414
  63. Chen J.H., Liu P.S., Cheng W. PBA-loaded albite-base ceramic foam in application to adsorb harmful ions of Cd, Cs and As(V) in water // Multidiscipline Modeling in Materials and Structures. 2019. V. 15. № 3. P. 659–672. https://doi.org/10.1108/MMMS-07-2018-0140
  64. U.S. Geological Survey: Mineral Commodity Summaries 2019. https://pubs.usgs.gov/publication/70202434
  65. Choubey P.K., Kim M.S., Srivastava R.R., Lee J.C., Lee J.Y. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources // Minerals Engineering. 2016. V. 89. P. 119–137. https://doi.org/10.1016/j.mineng.2016.01.010
  66. Ounissi T., Dammak L., Larchet C., Fauvarque J.-F., Selmane Bel Hadj Hmida E. Novel lithium selective composite membranes: synthesis, characterization and validation tests in dialysis // J. of Materials Science. 2020. V. 55. P. 16111–16128. https://doi.org/10.1007/s10853-020-05147-8
  67. Romero A.R., Elsayed H., Bernardo E. Highly porous cordierite ceramics from engineered basic activation of metakaolin/talc aqueous suspensions // J. of the European Ceramic Society. 2020. P. 40. № 15. P. 6254–6258. https://doi.org/10.1016/j.jeurceramsoc.2020.06.072
  68. Atkins Jr P.F., Scherger D.A. A review of physical-chemical methods for nitrogen removal from wastewaters // Proceedings of the conference on nitrogen as a water pollutant. – Pergamon, 2013. P. 713–719. https://doi.org/10.1016/B978-1-4832-1344-6.50051-4
  69. Adam M.R., Othman M.H.D., Hubadillah S.K., Abd Aziz M.H., Jamalludin M.R. Corrosion behavior of bulk nanocrystalline copper in ammonia solution // Materials Letters. 2011. P. 65. № 5. P. 857–859. https://doi.org/10.1016/j.matlet.2010.12.014
  70. Kouvelos E., Kesore K., Steriotis T., Grigoropoulou H., Bouloubasi D., Theophilou N., Tzintzos S., Kanelopoulos N. High pressure N2/CH4 adsorption measurements in clinoptilolites // Microporous and Mesoporous Materials. 2007. P. 99. № 1–2. P. 106–111. https://doi.org/10.1016/j.micromeso.2006.07.036
  71. Adam M.R., Othman M.H.D., Kurniawan T.A., Puteh M.H., Ismail A.F., Khongnakorn W., Rahman M. A., Jaafar J. Influence of the natural zeolite particle size toward the ammonia adsorption activity in ceramic hollow fiber membrane // Membranes. 2020. P. 10. № 4. P. 63. https://doi.org/10.3390/membranes10040063
  72. Yaroslavtsev A.B. Solid electrolytes: main prospects of research and development // Russian Chemical Reviews. 2016. V. 85. № 11. P. 1255. https://doi.org/10.1070/RCR4634
  73. Solovieva A.A., Kulbakin I.V. The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air // IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018. V. 347. № 1. ID 012036. https://doi.org/10.1088/1757-899X/347/1/012036
  74. Kulbakin I.V., Fedorov S.V. Promising NiO–30 wt% Ag–40 wt% Bi 2 O 3 membrane material for separation of oxygen from air // Inorganic Materials: Applied Research. 2018. V. 9. P. 868–872. https://doi.org/10.1134/S2075113318050180
  75. Han N., Wei Q., Zhang S., Yang N., Liu S. Rational design via tailoring Mo content in La 2 Ni 1-x Mo x O 4+δ to improve oxygen permeation properties in CO 2 atmosphere // J. of Alloys and Compounds. 2019. V. 806. P. 153–162. https://doi.org/10.1016/j.jallcom.2019.07.209
  76. Bardhan P. Ceramic honeycomb filters and catalysts // Current Opinion in Solid State and Materials Science. 1997. V. 2. № 5. P. 577–583. https://doi.org/10.1016/S1359-0286(97)80048-4
  77. Labhsetwar N., Doggali P., Rayalu S., Yadav R., Mistuhashi T., Haneda H. Ceramics in environmental catalysis: applications and possibilities // Chinese J. of Catalysis. 2012. V. 33. № 9–10. P. 1611–1621. https://doi.org/10.1016/S1872-2067(11)60440-3
  78. Cerri I., Saracco G., Specchia V. Methane combustion over low-emission catalytic foam burners // Catalysis today. 2000. V. 60. № 1–2. P. 21–32. https://doi.org/10.1016/S0920-5861(00)00313-8
  79. Fedotov A.S., Uvarov V.I., Tsodikov M.V, Paul S., Simon P., Marinova M., Dumeignil F. Production of styrene by dehydrogenation of ethylbenzene on a [Re, W]/γ- Al 2 O 3 (K, Ce)/α- Al 2 O 3 porous ceramic catalytic converter // Chem. Engineering and Processing-Process Intensification. 2021. V. 160. P. 108265. https://doi.org/10.1016/j.cep.2020.108265
  80. Fedotov A.S., Uvarov V.I., Tsodikov M.V., Paul S., Simon P., Marinova M., Dumeignil F. Dehydrogenation of cumene to α-methylstyrene on [Re, W]/γ- Al 2 O 3 (K, Ce)/α- Al 2 O 3 and [Fe, Cr]/γ- Al 2 O 3 (K, Ce)/α- Al 2 O 3 porous ceramic catalytic converters // Petrol. Chemistry. 2020. V. 60. P. 1268–1283. https://doi.org/10.1134/S0965544120110080
  81. Fraga M.C., Sanches S., Crespo J.G., Pereira V.J. Assessment of a new silicon carbide tubular honeycomb membrane for treatment of olive mill wastewaters // Membranes. 2017. V. 7. № 1. P. 12. https://doi.org/10.3390/membranes7010012
  82. Fraga M.C., Sanches S., Crespo J.G., Pereira V.J. Morphological, chemical surface and filtration characterization of a new silicon carbide membrane // J. of the European Ceramic Society. 2017. V. 37. № 3. P. 899–905. https://doi.org/10.1016/j.jeurceramsoc.2016.10.007
  83. Judkins R.R., Stinton D.P., DeVan J.H. A review of the efficacy of silicon carbide hot-gas filters in coal gasification and pressurized fluidized bed combustion environments // J. Eng. Gas Turbines Power. 1996. V. 118. № 3. P. 500–506. https://doi.org/10.1115/1.2816676
  84. Ledoux M.J., Hantzer S., Huu C.P., Guille J., Desaneaux M.P. New synthesis and uses of high-specific-surface SiC as a catalytic support that is chemically inert and has high thermal resistance // J. of Catalysis. 1988. V. 114. № 1. P. 176–185. https://doi.org/10.1016/0021-9517(88)90019-X
  85. Taslicukur Z., Balaban C., Kuskonmaz N. Production of ceramic foam filters for molten metal filtration using expanded polystyrene // J. of the European Ceramic Soc. 2007. V. 27. № 2–3. P. 637–640. https://doi.org/10.1016/j.jeurceramsoc.2006.04.129
  86. Wei G.C. Method for forming fibrous silicon carbide insulating material. – Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) // Patent US № 4481179. 1984. https://patents.google.com/patent/US4481179A/en
  87. Li J., Wu M., Du H., Wang B., Li Y., Huan W. Highly effective catalytic reduction of nitrobenzene compounds with gold nanoparticle-immobilized hydroxyapatite nanowire-sintered porous ceramic beads // New J. of Chemistry. 2021. V. 45. № 10. P. 4601–4610. https://doi.org/10.1039/D0NJ06209J
  88. Das D., Nijhuma K., Gabriel A.M., Daniel G.P.F., Murilo D.D.M.I. Recycling of coal fly ash for fabrication of elongated mullite rod bonded porous SiC ceramic membrane and its application in filtration // J. of the European Ceramic Soc. 2020. V. 40. № 5. P. 2163–2172. https://doi.org/10.1016/j.jeurceramsoc.2020.01.034
  89. Dong L., Zhang H., Zhang J., Wu W., Jia Q. Carbon nanotube modified sepiolite porous ceramics for high-efficient oil/water separation. Wuji Cailiao Xuebao// J. Inorg. Mater. 2020. V. 35. P. 689–696. https://doi.org/10.15541/jim20190382
  90. Gao N., Li J., Quan, C., Wang X., Yang Y. Oily sludge catalytic pyrolysis combined with fine particle removal using a Ni-ceramic membrane // Fuel. 2020. V. 277. ID 118134. https://doi.org/10.1016/j.fuel.2020.118134
  91. Liu Y., Song Z., Wang W., Wang Z., Zhang Y., Liu C., Wang Y., Li A., Xu B., Qi F. A CuMn 2 O 4 /g-C 3 N 4 catalytic ozonation membrane reactor used for water purification: Membrane fabrication and performance evaluation // Separation and Purification Technology. 2021. V. 265. ID 118268. https://doi.org/10.1016/j.seppur.2020.118268
  92. de Araujo Scharnberg A.R., de Loreto A.C., Wermuth T.B., Alves A.K., Arcaro S., dos Santos P.A.M., Rodriguez A.D.A.L. Porous ceramic supported TiO 2 nanoparticles: Enhanced photocatalytic activity for Rhodamine B degradation // Boletín de la Sociedad Española de Cerámica y Vidrio. 2020. V. 59. № 6. P. 230–238. https://doi.org/10.1016/j.bsecv.2019.12.001
  93. Wu Z., Hou Y., Li X., Li Y., Cao H. Pilot study on catalyzed oxidation-ceramic membrane-high pressure reverse osmosis for desulfurization wastewater recovery // IOP Conference Series: Earth and Environmental Science. – IOP Publishing, 2021. V. 668. № 1. ID 012033. https://doi.org/10.1088/1755-1315/668/1/012033
  94. Wang S., Tian J., Jia L., Jia J., Shan S., Wang Q., Cui F. Removal of aqueous organic contaminants using submerged ceramic hollow fiber membrane coupled with peroxymonosulfate oxidation: Comparison of CuO catalyst dispersed in the feed water and immobilized on the membrane // J. of Membrane Science. 2021. V. 618. ID 118707. https://doi.org/10.1016/j.memsci.2020.118707
  95. Bari M.A., Kindzierski W.B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta: sources and screening health risk assessment // Science of the Total Environment. 2018. V. 631. P. 627–640. https://doi.org/10.1016/j.scitotenv.2018.03.023
  96. Gallon V., Le Cann P., Sanchez M., Dematteo C., Le Bot B. Emissions of VOCs, SVOCs, and mold during the construction process: Contribution to indoor air quality and future occupants’ exposure // Indoor air. 2020. V. 30. № 4. P. 691–710. https://doi.org/10.1111/ina.12647
  97. Zagoruiko A.N., Mokrinskii V.V., Veniaminov S.A., Noskov A.S. On the performance stability of the MnO x /Al 2 O 3 catalyst for VOC incineration under forced adsorption-catalytic cycling conditions //J. of environmental chemical engineering. 2017. V. 5. № 6. P. 5850–5856. https://doi.org/10.1016/j.jece.2017.11.019
  98. Feng S., Liu J., Gao B., Bo L., Cao L. The filtration and degradation mechanism of toluene via microwave thermo-catalysis ceramic membrane // J. of Environmental Chemical Engineering. 2021. V. 9. № 2. ID 105105. https://doi.org/10.1016/j.jece.2021.105105
  99. Krivoshapkina E.F., Vedyagin A.A., Krivoshapkin P.V., Desyatykh I.V. Carbon monoxide oxidation over microfiltration ceramic membranes // Petrol. Chemistry. 2015. V. 55. P. 901–908. https://doi.org/10.1134/S0965544115100096
  100. Duan C., Tong J., Shang M., Nikodemski S., Sanders M., Ricote S., Almansoori A., O’Hayre R. Readily processed protonic ceramic fuel cells with high performance at low temperatures // Science. 2015. V. 349. № 6254. P. 1321–1326. https://doi.org/10.1126/science.aab3987
  101. Iwahara H. Proton conducting ceramics and their applications // Solid State Ionics. 1996. V. 86. P. 9-15. https://doi.org/10.1016/0167-2738(96)00087-2
  102. Molenda J., Kupecki J., Baron R., Blesznowski M., Brus G., Brylewski T., Bucko M., Chmielowiec J., Cwieka K., Gazda M. Status report on high temperature fuel cells in Poland–Recent advances and achievements // Int. J. of Hydrogen Energy. 2017. V. 42. № 7. P. 4366–4403. https://doi.org/10.1016/j.ijhydene.2016.12.087
  103. Phair J.W., Badwal S.P.S. Review of proton conductors for hydrogen separation // Ionics. 2006. V. 12. № 2. P. 103–115. https://doi.org/ 10.1007/s11581-006-0016-4
  104. Tao Z., Yan L., Qiao J.,Wang B., Zhang L., Zhang J. A review of advanced proton-conducting materials for hydrogen separation // Progress in Materials Science. 2015. V. 74. P. 1–50. https://doi.org/10.1016/j.pmatsci.2015.04.002
  105. Coors W.G. Protonic ceramic fuel cells for high-efficiency operation with methane // J. of Power Sources. 2003. V. 118. № 1–2. P. 150–156. https://doi.org/10.1016/S0378-7753(03)00072-7
  106. Duan C., Tong J., Shang M., Nikodemski S., Sanders M., Ricote S., Almansoori A., O’Hayre R. Readily processed protonic ceramic fuel cells with high performance at low temperatures // Science. 2015. V. 349. № 6254. P. 1321–1326. https://doi.org/10.1126/science.aab3987
  107. Norby T. Solid-state protonic conductors: principles, properties, progress and prospects // Solid State Ionics. 1999. V. 125. № 1–4. P. 1–11. https://doi.org/10.1016/S0167-2738(99)00152-6
  108. Sakai T., Matsushita S., Matsumoto H., Okada S., Hashimoto S., Ishihara T. Int. temperature steam electrolysis using strontium zirconate-based protonic conductors // Int. J. of Hydrogen Energy. 2009. V. 34. № 1. P. 56–63. https://doi.org/10.1016/j.ijhydene.2008.10.011
  109. Marnellos G., Stoukides M. Ammonia synthesis at atmospheric pressure // Science. 1998. V. 282. № 5386. P. 98–100. https://doi.org/10.1126/science.282.5386.98
  110. Morejudo S.H., Zanón R., Escolástico S., Yuste-Tirados I., Malerød-Fjeld H., Vestre P.K., Coors W.G., Martínez A., Norby T., Serra J.M. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor // Science. 2016. V. 353. № 6299. P. 563–566. https://doi.org/10.1126/science.aag0274
  111. Malerød-Fjeld H., Clark D., Yuste-Tirados I., Zanón R., Catalán-Martinez D., Beeaff D., Morejudo S.H., Vestre P.K., Norby T., Haugsrud R. Thermoelectrochemical production of compressed hydrogen from methane with near-zero energy loss // Nature Energy. 2017. V. 2. № 12. P. 923–931. https://doi.org/10.1038/s41560-017-0029-4
  112. Løken A., Ricote S., Wachowski S. Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes // Crystals. 2018. V. 8. № 9. P. 365. https://doi.org/10.3390/cryst8090365
  113. Lei L., Zhang J., Yuan Z., Liu J., Ni M., Chen F. Progress report on proton conducting solid oxide electrolysis cells // Advanced Functional Materials. 2019. V. 29. № 37. ID 1903805. https://doi.org/10.1002/adfm.201903805
  114. Medvedev D. Trends in research and development of protonic ceramic electrolysis cells // Int. J. of Hydrogen Energy. 2019. V. 44. № 49. P. 26711–26740. https://doi.org/10.1016/j.ijhydene.2019.08.130
  115. Duan C., Huang J., Sullivan N., O’Hayre R. Proton-conducting oxides for energy conversion and storage // Applied Physics Reviews. 2020. V. 7. № 1. ID 011314. https://doi.org/10.1063/1.5135319
  116. Kim J., Sengodan S., Kim S., Kwon O., Bu Y., Kim G. Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage // Renewable and Sustainable Energy Reviews. 2019. V. 109. P. 606–618. https://doi.org/10.1016/j.rser.2019.04.042
  117. Chiara A., Giannici F., Pipitone C., Longo A., Aliotta C., Gambino M., Martorana A. Solid–solid interfaces in protonic ceramic devices: a critical review // ACS Applied Materials & Interfaces. 2020. V. 12. № 50. P. 55537–55553. https://doi.org/10.1021/acsami.0c13092
  118. Ortiz-Vitoriano N., Drewett N.E., Gonzalo E., Rojo T. High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries // Energy & Environmental Science. 2017. V. 10. № 5. P. 1051–1074. https://doi.org/10.1039/C7EE00566K
  119. Terada N., Yanagi T., Arai S., Yoshikawa M., Ohta K., Nakajima N., Yanai A., Arai N. Development of lithium batteries for energy storage and EV applications // J. of Power Sources. 2001. V. 100. № 1–2. P. 80–92. https://doi.org/10.1016/S0378-7753(01)00885-0
  120. Li W., Dahn J.R., Wainwright D.S. Rechargeable lithium batteries with aqueous electrolytes // Science. 1994. V. 264. № 5162. P. 1115–1118. https://doi.org/10.1126/science.264.5162.1115
  121. Liu D., Zhu W., Trottier J., Gagnon C., Barray F., Guerfi A., Mauger A., Groult H., Julien C.M., Goodenough J.B. Spinel materials for high-voltage cathodes in Li-ion batteries // Rsc Advances. 2014. V. 4. № 1. P. 154–167. https://doi.org/10.1039/C3RA45706K
  122. Campanella D., Belanger D., Paolella A. Beyond garnets, phosphates and phosphosulfides solid electrolytes: New ceramic perspectives for all solid lithium metal batteries // J. of Power Sources. 2021. V. 482. P. 228949. https://doi.org/10.1016/j.jpowsour.2020.228949
  123. Brissot C., Rosso M., Chazalviel J.-N., Lascaud S. Dendritic growth mechanisms in lithium/polymer cells // J. of power sources. 1999. V. 81. P. 925–929. https://doi.org/10.1016/S0378-7753(98)00242-0
  124. Snyder J.F., Carter R.H., Wetzel E.D. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries // Chemistry of materials. 2007. V. 19. № 15. P. 3793–3801. https://doi.org/10.1021/cm070213o
  125. Murugan R., Thangadurai V., Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 // Angewandte Chemie-International Edition in English. 2007. V. 46. № 41. P. 7778. https://doi.org/10.1002/anie.200701144
  126. Inaguma Y., Liquan C., Itoh M., Nakamura T., Uchida T., Ikuta H., Wakihara M. High ionic conductivity in lithium lanthanum titanate // Solid State Communications. 1993. V. 86. № 10. P. 689–693. https://doi.org/10.1016/0038-1098(93)90841-A
  127. Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., Kawamoto K. A lithium superionic conductor // Nature materials. 2011. V. 10. № 9. P. 682–686. https://doi.org/10.1038/nmat3066
  128. Braga M.H., Murchison A.J., Ferreira J.A., Singh P., Goodenough J.B. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells // Energy & Environmental Science. 2016. V. 9. № 3. P. 948–954. https://doi.org/10.1039/C5EE02924D
  129. Fu J. Fast Li+ ion conducting glass-ceramics in the system Li2O– Al 2 O 3 GeO 2 P 2 O 5 // Solid State Ionics. 1997. V. 104. № 3–4. P. 191–194. https://doi.org/10.1016/S0167-2738(97)00434-7
  130. Fu J. Superionic conductivity of glass-ceramics in the system Li 2 O- Al 2 O 3 - TiO 2 - P 2 O 5 // Solid State Ionics. 1997. V. 96. № 3–4. P. 195–200. https://doi.org/10.1016/S0167-2738(97)00018-0
  131. Dhanushkodi S.R., Capitanio F., Biggs T., Merida W. Understanding flexural, mechanical and physico-chemical properties of gas diffusion layers for polymer membrane fuel cell and electrolyzer systems // Int. J. of Hydrogen Energy. 2015. V. 40. № 46. P. 16846–16859. https://doi.org/10.1016/j.ijhydene.2015.07.033
  132. Jayakumar A., Singamneni S., Ramos M., Al-Jumaily A.M., Pethaiah S.S. Manufacturing the gas diffusion layer for PEM fuel cell using a novel 3D printing technique and critical assessment of the challenges encountered // Materials. 2017. V. 10. № 7. ID 796. https://doi.org/10.3390/ma10070796
  133. Omrani R., Shabani B. Gas diffusion layers in fuel cells and electrolysers: A novel semi-empirical model to predict electrical conductivity of sintered metal fibres // Energies. 2019. V. 12. № 5. P. 855. https://doi.org/10.3390/en12050855
  134. Ozden A., Alaefour I.E., Shahgaldi S., Li X., Colpan C.O., Hamdullahpur F. Gas diffusion layers for PEM fuel cells: ex-and in-situ characterization // Exergetic, energetic and environmental dimensions. 2018. P. 695–727. https://doi.org/10.1016/B978-0-12-813734-5.00040-8
  135. Moni P., Deschamps A., Schumacher D., Rezwan K., Wilhelm M. A new silicon oxycarbide based gas diffusion layer for zinc-air batteries // J. of colloid and interface science. 2020. V. 577. P. 494–502. https://doi.org/10.1016/j.jcis.2020.05.041
  136. Adamson D.T., Piña E.A., Cartwright A.E., Rauch S.R., Anderson R.H., Mohr T., Connor J.A. 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule // Science of the Total Environment. 2017. V. 596. P. 236–245. https://doi.org/ 10.1016/j.scitotenv.2017.04.085
  137. Karges U., Becker J., Püttmann W. 1,4-Dioxane pollution at contaminated groundwater sites in western Germany and its distribution within a TCE plume // Science of the Total Environment. 2018. V. 619. P. 712–720. https://doi.org/10.1016/j.scitotenv.2017.11.043
  138. McElroy A.C., Hyman M.R., Knappe D.R.U. 1, 4-Dioxane in drinking water: emerging for 40 years and still unregulated //Current opinion in environmental science & health. 2019. V. 7. P. 117–125. https://doi.org/10.1016/j.coesh.2019.01.003
  139. Sun M., Lopez-Velandia C., Knappe D.R.U. Determination of 1, 4-dioxane in the Cape Fear River watershed by heated purge-and-trap preconcentration and gas chromatography–mass spectrometry // Environmental Science & Technology. 2016. V. 50. № 5. P. 2246–2254. https://doi.org/10.1021/acs.est.5b05875
  140. Tian G.-P., Wu Q.-Y., Li A., Wang W.-L., Hu H.-Y. Promoted ozonation for the decomposition of 1, 4-dioxane by activated carbon // Water Science and Technology: Water Supply. 2017. V. 17. № 2. P. 613–620. https://doi.org/10.2166/ws.2016.071
  141. Mao J., Quan X.,Wang J., Gao C., Chen S., Yu H., Zhang Y. Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO 3 perovskite for degradation of organic pollutants // Frontiers of Environmental Science & Engineering. 2018. V. 12. P. 1–10. https://doi.org/ 10.1007/s11783-018-1060-9
  142. Varanasi L., Coscarelli E., Khaksari M., Mazzoleni L.R., Minakata D. Transformations of dissolved organic matter induced by UV photolysis, Hydroxyl radicals, chlorine radicals, and sulfate radicals in aqueous-phase UV-Based advanced oxidation processes // Water Research. 2018. V. 135. P. 22–30. https://doi.org/10.1016/j.watres.2018.02.015
  143. Wei S., Zeng C., Lu Y., Liu G., Luo H., Zhang R. Degradation of antipyrine in the Fenton-like process with a La-doped heterogeneous catalyst // Frontiers of Environmental Science & Engineering. 2019. V. 13. P. 1–11. https://doi.org/10.1007/s11783-019-1149-9
  144. Xue S., Sun S., Qing W., Huang T., Liu W., Liu C., Yao H., Zhang W. Experimental and computational assessment of 1, 4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process //Frontiers of Environmental Science & Engineering. 2021. V. 15. P. 1–13. https://doi.org/10.1007/s11783-020-1341-y
  145. Badwal S.P.S., Giddey S., Munnings C., Kulkarni A. Review of progress in high temperature solid oxide fuel cells // ChemInform. 2014. V. 50. № 1. P. 23–37. https://doi.org/ 10.1002/chin.201531316
  146. Dogdibegovic E., Wang R., Lau G.Y., Tucker M.C. High performance metal-supported solid oxide fuel cells with infiltrated electrodes // J. of Power Sources. 2019. V. 410. P. 91–98. https://doi.org/10.1016/j.jpowsour.2018.11.004
  147. Do M.H., Ngo H.H., Guo W., Chang S.W., Nguyen D.D., Liu Y., Varjani S., Kumar M. Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review // Science of the Total Environment. 2020. V. 712. ID 135612. https://doi.org/10.1016/j.scitotenv.2019.135612
  148. Gajda I., Obata O., Salar-Garcia M.J., Greenman J., Ieropoulos I.A. Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations // Bioelectrochemistry. 2020. V. 133. ID 107459. https://doi.org/10.1016/j.bioelechem.2020.107459
  149. Rodríguez J., Mais L., Campana R., Piroddi L., Mascia M., Gurauskis J., Vacca A., Palmas S. Comprehensive characterization of a cost-effective microbial fuel cell with Pt-free catalyst cathode and slip-casted ceramic membrane // Int. J. of Hydrogen Energy. 2021. V. 46. № 51. P. 26205–26223. https://doi.org/10.1016/j.ijhydene.2021.01.066
  150. Koros W.J., Ma Y.H., Shimidzu T. Terminology for membranes and membrane processes (IUPAC Recommendations 1996) // Pure and Applied Chemistry. 1996. V. 68. № 7. P. 1479–1489. https://doi.org/10.1351/pac199668071479
  151. Hsieh H.P., Bhave R.R., Fleming H.L. Microporous alumina membranes // J. of membrane science. 1988. V. 39. № 3. P. 221–241. https://doi.org/10.1016/S0376-7388(00)80931-X
  152. Dyer P.N., Richards R.E., Russek S.L., Taylor D.M. Ion transport membrane technology for oxygen separation and syngas production // Solid State Ionics. 2000. V. 134. № 1–2. P. 21–33. https://doi.org/10.1016/S0167-2738(00)00710-4
  153. Li S., Baeyens J., Dewil R., Appels L., Zhang H., Deng Y. Advances in rigid porous high temperature filters // Renewable and Sustainable Energy Reviews. 2021. V. 139. ID 110713. https://doi.org/10.1016/j.rser.2021.110713
  154. Deng Y., Ansart R., Baeyens J., Zhang H. Flue gas desulphurization in circulating fluidized beds // Energies. 2019. V. 12. № 20. ID 3908. https://doi.org/10.3390/en12203908
  155. Sobolewski A., Iluk T., Szul, M. SRF gasification in GazEla pilot fixed bed gas generator for CHP units // J. Power Technol. 2017. V. 97. № 2. P.158–162. https://papers.itc.pw.edu.pl/index.php/JPT/article/view/984
  156. Szul M., Iluk T., Sobolewski A. High-temperature, dry scrubbing of syngas with use of mineral sorbents and ceramic rigid filters // Energies. 2020. V. 13. № 6. P. 1528. https://doi.org/10.3390/en13061528
  157. Eterigho-Ikelegbe O., Bada S.O., Daramola M.O. Preparation and evaluation of nanocomposite sodalite/α- Al 2 O 3 tubular membranes for H2/CO2 separation // Membranes. 2020. V. 10. № 11. V. 312. https://doi.org/10.3390/membranes10110312
  158. Dong H., Li J., Li Y., Hu L., Luo D. Improvement of catalytic activity and stability of lipase by immobilization on organobentonite // Chem. Engineering J. 2012. V. 181. P. 590–596. https://doi.org/10.1016/j.cej.2011.11.095
  159. Hofs B., Ogier J., Vries D., Beerendonk E.F., Cornelissen E.R. Comparison of ceramic and polymeric membrane permeability and fouling using surface water // Separation and Purification Technology. 2011. V. 79. № 3. P. 365–374. https://doi.org/10.1016/j.seppur.2011.03.025
  160. Bensadok K., Belkacem M., Nezzal G. Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation // Desalination. 2007. V. 206. № 1–3. P. 440–448. https://doi.org/10.1016/j.desal.2006.02.070
  161. Binner E.R., Robinson J.P., Kingman S.W., Lester E.H., Azzopardi B.J., Dimitrakis G., Briggs J. Separation of oil/water emulsions in continuous flow using microwave heating // Energy & Fuels. 2013. V. 27. № 6. P. 3173–3178. https://doi.org/10.1021/ef400634n
  162. Stack L.J., Carney P.A., Malone H.B.,Wessels T.K. Factors influencing the ultrasonic separation of oil-in-water emulsions // Ultrasonics sonochemistry. 2005. V. 12. № 3. P. 153–160. https://doi.org/10.1016/j.ultsonch.2003.10.008
  163. Zhong J., Sun X., Wang C. Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration // Separation and Purification Technology. 2003. V. 32. № 1–3. P. 93–98. https://doi.org/10.1016/S1383-5866(03)00067-4
  164. Koros W.J., Mahajan R. Pushing the limits on possibilities for large scale gas separation: which strategies? // J. of Membrane Science. 2000. V. 175. № 2. P. 181–196. https://doi.org/10.1016/S0376-7388(00)00418-X
  165. Hubadillah S.K., Othman M.H.D., Rahman M.A., Ismail A.F., Jaafar J. Preparation and characterization of inexpensive kaolin hollow fibre membrane (KHFM) prepared using phase inversion/sintering technique for the efficient separation of real oily wastewater // Arabian J. of Chemistry. 2020. V. 13. № 1. P. 2349–2367. https://doi.org/10.1016/j.arabjc.2018.04.018
  166. Liu J., Zhang Y., Hong Z., Liu H., Wang Sh., Gu X. Fabrication of dual-layer hollow fiber ceramic composite membranes by Co-extrusion // J. of Inorg. materials. 2020. V. 35. № 12. P. 1333–1339. https://doi.org/10.15541/jim20200182
  167. Raji Y.O., Othman M.H.D., Nordin N.A.H.S.M., ShengTai Z., Usman J., Mamah S.C., Ismail A.F., Rahman M.A., Jaafar J. Fabrication of magnesium bentonite hollow fibre ceramic membrane for oil-water separation // Arabian J. of Chemistry. 2020. V. 13. № 7. P. 5996–6008. https://doi.org/10.1016/j.arabjc.2020.05.001
  168. Kamarudin N.H., Harun Z., Othman M.H.D., Abdullahi T., Syamsul Bahri S., Kamarudin N.H., Yunos M.Z., Wan Salleh W.N. Waste environmental sources of metakaolin and corn cob ash for preparation and characterisation of green ceramic hollow fibre membrane (h-MCa) for oil-water separation // Ceramics Int. J. 2020. V. 46. № 2. P. 1512–1525. https://doi.org/10.1016/j.ceramint.2019.09.118
  169. Shuit S.H., Ong Y.T., Lee K.T., Subhash B., Tan S.H. Membrane technology as a promising alternative in biodiesel production: a review // Biotechnology advances. 2012. V. 30. № 6. P. 1364–1380. https://doi.org/10.1016/j.biotechadv.2012.02.009
  170. Atadashi I.M., Aroua M.K., Aziz A.A. Biodiesel separation and purification: a review // Renewable Energy. 2011. V. 36. № 2. P. 437–443. https://doi.org/10.1016/j.renene.2010.07.019
  171. di Bitonto L., Pastore C. Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel // Renewable Energy. 2019. V. 143. P. 1193–1200. https://doi.org/10.1016/j.renene.2019.05.100
  172. Fonseca J.M., Teleken J.G., de Cinque Almeida V., da Silva C. Biodiesel from waste frying oils: Methods of production and purification // Energy Conversion and Management. 2019. V. 184. P. 205–218. https://doi.org/10.1016/j.enconman.2019.01.061
  173. Moreira W.M., da Igreja G., Viotti P.V., Baptista C.M.S.G., Gimenes M.L., Gomes M.C.S., Pereira N.C. Soybean biodiesel purification through an acid‐system membrane technology: effect of oil quality and separation process parameters // J. of Chem. Tech. & Biotechnology. 2020. V. 95. № 7. P. 1962–1969. https://doi.org/ 10.1002/jctb.6395
  174. Wang X.-L., Zhang Y.-T., Gao B., Zhang C., Gu X.-H. Preparation and characterization of NaA zeolite membranes on inner-surface of four-channel ceramic hollow fibers // J. Inorg. Mater. 2018. V. 33. P. 339–344. https://doi.org/10.15541/jim20170174
  175. Fisher J.B., Melton F., Middleton E., Hain C., Anderson M., Allen R., McCabe M. F., Hook S., Baldocchi D., Townsend P.A. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources // Water resources research. 2017. V. 53. № 4. P. 2618–2626. https://doi.org/10.1002/2016WR020175
  176. Drioli E., Ali A., Macedonio F. Membrane distillation: Recent developments and perspectives // Desalination. 2015. V. 356. P. 56–84. https://doi.org/10.1016/j.desal.2014.10.028
  177. Khayet M. Membranes and theoretical modeling of membrane distillation: A review // Advances in colloid and interface science. 2011. V. 164. № 1–2. P. 56–88. https://doi.org/10.1016/j.cis.2010.09.005
  178. Wang P., Chung T.S. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring // J. of Membrane Science. 2015. V. 474. P. 39–56. https://doi.org/10.1016/j.memsci.2014.09.016
  179. Hoppach D., Werzner E., Demuth C., Löwer E., Lehmann H., Ditscherlein L., Ditscherlein R., Peuker U.A., Ray S. Experimental investigations of the depth filtration inside open‐cell foam filters supported by high‐resolution computed tomography scanning and pore‐scale numerical simulations // Advanced Engineering Materials. 2020. V. 22. № 2. ID 1900761. https://doi.org/10.1002/adem.201900761
  180. Demir A. Fabrication of alumina ceramic filters and performance tests for aluminium castings // Polish Acad Sciences Inst Physics. 2018. https://doi.org/10.12693/APhysPolA.134.332
  181. Damoah L.N.W., Zhang L. AlF3 reactive Al 2 O 3 foam filter for the removal of dissolved impurities from molten aluminum: Preliminary results // Acta Materialia. 2011. V. 59. № 3. P. 896–913. https://doi.org/10.1016/j.actamat.2010.09.064
  182. Bao S., Syvertsen M., Nordmark A., Kvithyld A., Engh T., Tangstad M. Plant scale investigation of liquid aluminium filtration by Al 2 O 3 and SiC ceramic foam filters // Light Metals 2013. 2016. Р. 981–986. https://doi.org/10.1007/978-3-319-65136-1_166
  183. Emmel M., Aneziris C.G., Sponza F., Dudczig S., Colombo P. In situ spinel formation in Al 2 O 3 –MgO–C filter materials for steel melt filtration // Ceramics International. 2014. V. 40. № 8. P. 13507–13513. https://doi.org/10.1016/j.ceramint.2014.05.033
  184. Bavand-Vandchali M., Sarpoolaky H., Golestani-Fard F., Rezaie H.R. Atmosphere and carbon effects on microstructure and phase analysis of in situ spinel formation in MgO–C refractories matrix // Ceramics International. 2009. V. 35. № 2. P. 861–868. https://doi.org/10.1016/j.jeurceramsoc.2007.07.009
  185. Mazzoni A.D., Sainz M. A., Caballero A., Aglietti E.F. Formation and sintering of spinels ( MgAl 2 O 4 ) in reducing atmospheres // Materials chemistry and physics. 2003. V. 78. № 1. P. 30–37. https://doi.org/10.1016/S0254-0584(02)00333-4
  186. Sainz M.A., Mazzoni A.D., Aglietti E.F., Caballero A. Thermochemical stability of spinel (MgO· Al 2 O 3 ) under strong reducing conditions // Materials Chemistry and physics. 2004. V. 86. № 2–3. P. 399–408. https://doi.org/ 10.1016/j.matchemphys.2004.04.007
  187. Tripathi H.S., Ghosh A. Spinelisation and properties of Al 2 O 3 MgAl 2 O 4 –C refractory: Effect of MgO and Al 2 O 3 reactants // Ceramics International. 2010. V. 36. № 4. P. 1189–1192. https://doi.org/10.1016/j.ceramint.2009.12.011
  188. Khanna R., Kongkarat S., Seetharaman S., Sahajwalla V. Carbothermic reduction of alumina at 1823 K in the presence of molten steel: a sessile drop investigation // ISIJ international. 2012. V. 52. № 6. P. 992–999. https://doi.org/10.2355/isijinternational.52.992
  189. Gehre P., Schmidt A., Dudczig S., Hubálková J., Aneziris C.G., Child N., Delaney I., Rancoule G., DeBastiani D. Interaction of slip‐and flame‐spray coated carbon‐bonded alumina filters with steel melts // J. of Am. Chem. Soc. 2018. V. 101. № 7. P. 3222–3233. https://doi.org/10.1111/jace.15431
  190. Mkandawire T., Banda E. Assessment of drinking water quality of Mtopwa village in Bangwe Township, Blantyre // Desalination. 2009. V. 248. № 1–3. P. 557–561. https://doi.org/10.1016/j.desal.2008.05.101
  191. Abebe L.S., Chen X., Sobsey M.D. Chitosan coagulation to improve microbial and turbidity removal by ceramic water filtration for household drinking water treatment // Int. J. of Environmental Research and Public Health. 2016. V. 13. № 3. P. 269. https://doi.org/10.3390/ijerph13030269
  192. Huang J., Huang G., An C., He Y., Yao Y., Zhang P., Shen J. Performance of ceramic disk filter coated with nano ZnO for removing Escherichia coli from water in small rural and remote communities of developing regions // Environmental Pollution. 2018. V. 238. P. 52–62. https://doi.org/10.1016/j.envpol.2018.03.008
  193. Farrow C., McBean E., Huang G., Yang A., Wu Y., Liu Z., Dai Z., Fu H., Cawte T., Li Y. Ceramic water filters: A point-of-use water treatment technology to remove bacteria from drinking water in Longhai City, Fujian Province // J. of Environmental Informatics. 2018. V. 32. № 2. P. 63–68. https://doi.org/10.3808/jei.201800388
  194. Thuy P.T., Anh N.V., Van der Bruggen B. Low-cost technologies for safe drinking water in south-east asia: overview and application to the north of vietnam // Environmental Engineering and Management J. 2013. V. 12. № 11. P. 2051–2060. https://doi.org/10.30638/eemj.2013.256
  195. Diana S., Fauzan R., Elfiana E. Removing Escherichia coli bacteria in river water using ceramic membrane from mixed clay and fly ash material // IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019. V. 536. № 1. ID 012089. https://doi.org/10.1088/1757-899X/536/1/012089
  196. Murphy H.M., McBean E.A., Farahbakhsh K. A critical evaluation of two point-of-use water treatment technologies: can they provide water that meets WHO drinking water guidelines? // J. of water and health. 2010. V. 8. № 4. P. 611–630. https://doi.org/ 10.2166/wh.2010.156
  197. Liu Y., Zhu W., Guan K., Peng C., Wu J. Preparation of high permeable alumina ceramic membrane with good separation performance via UV curing technique // RSC advances. 2018. V. 8. № 24. P. 13567–13577. https://doi.org/10.1039/C7RA13195J
  198. Zhao Y., Huang G., An C., Huang J., Xin X., Chen X., Hong Y., Song P. Removal of Escherichia Coli from water using functionalized porous ceramic disk filter coated with Fe/ TiO 2 nano-composites // J. of Water Process Engineering. 2020. V. 33. ID 101013. https://doi.org/10.1016/j.jwpe.2019.101013
  199. Pelaez M., Nolan N.T., Pillai S.C., Seery M.K., Falaras P., Kontos A.G., Dunlop P.S.M., Hamilton J.W.J., Byrne J.A., O’Shea K. A review on the visible light active titanium dioxide photocatalysts for environmental applications // Applied Catalysis B: Environmental. 2012. V. 125. P. 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036
  200. Diao Z.-H., Xu X.-R., Jiang D., Liu J.-J., Kong L.-J., Li G., Zuo L.-Z., Wu Q.-H. Simultaneous photocatalytic Cr(VI) reduction and ciprofloxacin oxidation over TiO 2 /Fe0 composite under aerobic conditions: performance, durability, pathway and mechanism // Chem. Engineering J. 2017. V. 315. P. 167–176. https://doi.org/10.1016/j.cej.2017.01.006
  201. Liu L., Chen F., Yang F., Chen Y. Photocatalytic degradation of 2, 4-dichlorophenol using nanoscale Fe/ TiO 2 // Chem. Engineering J. 2012. V. 181. P. 189–195. https://doi.org/ 10.1016/j.cej.2011.11.060
  202. Saifuddin S., Lisa A., Amalia Z., Faridah F., Elfiana E. Applications of micro size anorganic membrane of clay, zeolite and active carbon as filters for peat water purification // Journal of Physics: Conference Series. IOP Publishing, 2020. V. 1450. № 1. ID 012010. https://doi.org/10.1088/1742-6596/1450/1/012010
  203. Peng S., Chen Y., Jin X., Lu W., Gou M., Wei X., Xie J. Polyimide with half encapsulated silver nanoparticles grafted ceramic composite membrane: Enhanced silver stability and lasting anti‒biofouling performance // J. of Membrane Science. 2020. V. 611. ID 118340. https://doi.org/10.1016/j.memsci.2020.118340
  204. Awang Chee D.N., Ismail A.F., Aziz F., Mohamed Amin M.A., Abdullah N. The influence of alumina particle size on the properties and performance of alumina hollow fiber as support membrane for protein separation // Separation and Purification Technology. 2020. V. 250. ID 117147. https://doi.org/10.1016/j.seppur.2020.117147
  205. Shi Y., Matsunaga T., Yamaguchi Y., Li Z., Gu X., Chen X. Long-term trends and spatial patterns of satellite-retrieved PM2. 5 concentrations in South and Southeast Asia from 1999 to 2014 // Science of the Total Environment. 2018. V. 615. P. 177–186. https://doi.org/10.1016/j.scitotenv.2017.09.241
  206. Saleem M., Krammer G. Optical in-situ measurement of filter cake height during bag filter plant operation // Powder Technology. 2007. V. 173. № 2. P. 93–106. https://doi.org/10.1016/j.powtec.2006.12.008
  207. Zhou R., Shen H., Zhao M. Simulation studies on protector of pulse-jet cleaning filter bag // Energy Procedia. 2012. V. 16. P. 426-431. https://doi.org/10.1016/j.egypro.2012.01.069
  208. Gallimberti I. Recent advancements in the physical modelling of electrostatic precipitators // J. of electrostatics. 1998. V. 43. № 4. P. 219–247. https://doi.org/ 10.1016/S0304-3886(98)00009-6
  209. Song X., Jian B., Jin J. Preparation of porous ceramic membrane for gas-solid separation // Ceramics International. 2018. V. 44. № 16. P. 20361–-20366. https://doi.org/10.1016/j.ceramint.2018.08.026
  210. Hwa L.C., Rajoo S., Noor A.M., Ahmad N., Uday M.B. Recent advances in 3D printing of porous ceramics: A review // Current Opinion in Solid State and Materials Science. 2017. V. 21. № 6. P. 323–347. https://doi.org/10.1016/j.cossms.2017.08.002
  211. Zocca A., Elsayed H., Bernardo E., Gomes C.M., Lopez-Heredia M.A., Knabe C., Colombo P., Günster J. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder // Biofabrication. 2015. V. 7. № 2. ID 025008. https://doi.org/10.1088/1758-5090/7/2/025008
  212. Ben Y., Zhang L., Wei S., Zhou T., Li Z., Yang H., Wong C., Chen H. Improved forming performance of β-TCP powders by doping silica for 3D ceramic printing // J. of Materials Science: Materials in Electronics. 2017. V. 28. P. 5391–5397. https://doi.org/10.1007/s10854-016-6199-1
  213. Eckel Z.C., Zhou C., Martin J.H., Jacobsen A.J., Carter W.B., Schaedler T.A. Additive manufacturing of polymer-derived ceramics // Science. 2016. V. 351. № 6268. P. 58-62. https://doi.org/10.1126/science.aad2688
  214. Li S., Duan W., Zhao T., Han W., Wang L., Dou R., Wang G. The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology // J. of the European Ceramic Society. 2018. V. 38. № 14. P. 4597–4603. https://doi.org/10.1016/j.jeurceramsoc.2018.06.046
  215. An D., Li H., Xie Z., Zhu T., Luo X., Shen Z., Ma J. Additive manufacturing and characterization of complex Al2O3 parts based on a novel stereolithography method // Intern. J. of Applied Ceramic Technology. 2017. V. 14. № 5. P. 836–844. https://doi.org/10.1111/ijac.12721
  216. Doreau F., Chaput C., Chartier T. Stereolithography for ceramic part manufacturing // Ceramics–Processing, Reliability, Tribology and Wear. 2000. V. 12. P. 69–74. https://doi.org/10.1002/3527607293.ch12
  217. Mei H., Huang W., Zhao Y., Cheng L. Strengthening three‐dimensional printed ultra‐light ceramic lattices // J. of the Am. Ceramic Soc. 2019. V. 102. № 9. P. 5082–5089. https://doi.org/10.1111/jace.16403
  218. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges // Composites Part B: Engineering. 2018. V. 143. P. 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
  219. Owen D., Hickey J., Cusson A., Ayeni O.I., Rhoades J., Deng Y., Zhang Y., Wu L., Park H.-Y., Hawaldar N. 3D printing of ceramic components using a customized 3D ceramic printer // Progress in additive manufacturing. 2018. V. 3. P. 3–9. https://doi.org/10.1007/s40964-018-0037-3
  220. Mei H., Tan Y., Huang W., Chang P., Fan Y., Cheng L. Structure design influencing the mechanical performance of 3D printing porous ceramics // Ceramics International. 2021. V. 47. № 6. P. 8389–8397. https://doi.org/10.1016/j.ceramint.2020.11.203
  221. Yuan L., Jin E., Li C., Liu Z., Tian C., Ma B., Yu J. Preparation of calcium hexaluminate porous ceramics by novel pectin based gelcasting freeze-drying method // Ceramics International. 2021. V. 47. № 7. P. 9017–9023. https://doi.org/10.1016/j.ceramint.2020.12.024
  222. Al-Jawoosh S., Ireland A., Su B. Characterisation of mechanical and surface properties of novel biomimetic interpenetrating alumina-polycarbonate composite materials // Dental Materials. 2020. V. 36. № 12. P. 1595–1607. https://doi.org/10.1016/j.dental.2020.09.016
  223. Arici S., Regan D. Alternatives to ceramic brackets: the tensile bond strengths of two aesthetic brackets compared ex vivo with stainless steel foil-mesh bracket bases // British journal of orthodontics. 1997. V. 24. № 2. P. 133–137. https://doi.org/10.1093/ortho.24.2.133
  224. Faltermeier A., Behr M., Müßig D. In vitro colour stability of aesthetic brackets // European J. of Orthodontics. 2007. V. 29. № 4. P. 354–358. https://doi.org/10.1093/ejo/cjm020
  225. Feldner J.C., Sarkar N.K., Sheridan J.J., Lancaster D.M. In vitro torque-deformation characteristics of orthodontic polycarbonate brackets // Am. J. of Orthodontics and Dentofacial Orthopedics. 1994. V. 106. № 3. P. 265–272. https://doi.org/10.1016/S0889-5406(94)70046-X
  226. Göhring T.N., Gallo L., Lüthy H. Effect of water storage, thermocycling, the incorporation and site of placement of glass-fibers on the flexural strength of veneering composite // Dental Materials. 2005. V. 21. № 8. P. 761–772. https://doi.org/ 10.1016/j.dental.2005.01.013
  227. Eliades T. Orthodontic materials research and applications. Рart 2. Current status and projected future developments in materials and biocompatibility // Am. J. of Orthodontics and Dentofacial Orthopedics. 2007. V. 131. № 2. P. 253–262. https://doi.org/10.1016/j.ajodo.2005.12.029
  228. Karamouzos A., Athanasiou A.E., Papadopoulos M.A. Clinical characteristics and properties of ceramic brackets: a comprehensive review //American journal of orthodontics and dentofacial orthopedics. 1997. V. 112. № 1. P. 34–40. https://doi.org/10.1016/S0889-5406(97)70271-3
  229. Meguro D., Hayakawa T., Kawasaki M., Kasai K. Shear bond strength of calcium phosphate ceramic brackets to human enamel // Angle Orthodontist. 2006. V. 76. № 2. P. 301–305. https://doi.org/10.1043/0003-3219(2006)076 [0301:SBSOCP]2.0.CO;2
  230. Buzzitta V.A.J., Hallgren S.E., Powers J.M. Bond strength of orthodontic direct-bonding cement-bracket systems as studied in vitro // Am. J. of Orthodontics. 1982. V. 81. № 2. P. 87–92. https://doi.org/10.1016/0002-9416(82)90031-8
  231. Douglass J.B. Enamel wear caused by ceramic brackets // American Journal of Orthodontics and Dentofacial Orthopedics. 1989. V. 95. № 2. P. 96–98. https://doi.org/ 10.1016/0889-5406(89)90387-9
  232. Qin H., Li Y., Nie X., Yan M., Jiang P., Xue W. Combined effect of Fe-Si alloys and carbon on Si3N4 stability at elevated temperatures // Ceramics International. 2019. V. 45. № 3. P. 3290–3296. https://doi.org/10.1016/j.ceramint.2018.10.238
  233. Yuan Y., Li Z., Cao L., Tang B., Zhang S. Modification of Si 3 N 4 ceramic powders and fabrication of Si 3 N 4 /PTFE composite substrate with high thermal conductivity // Ceramics International. 2019. V. 45. № 13. P. 16569–16576. https://doi.org/10.1016/j.ceramint.2019.05.194
  234. Zeuner M., Pagano S., Schnick W. Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity // Ceramics Science and Technology. 2013. P. 373–413. https://doi.org/ 10.1002/9783527631971.ch10
  235. Li B., Li G., Chen J., Chen H., Xing X., Hou X., Li Y. Formation mechanism of elongated β–Si3N4 crystals in Fe–Si3N4 composite via flash combustion // Ceramics International. 2018. V. 44. № 8. P. 9395–9400. https://doi.org/10.1016/j.ceramint.2018.02.155
  236. Zhang T., Kong L., Dai Y., Yue X., Rong J., Qiu F., Pan J. Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO 2 nanowires // Chemical Engineering J.. 2017. V. 309. P. 7–14. https://doi.org/ 10.1016/j.cej.2016.08.085
  237. Yue X., Zhang T., Yang D., Qiu F. Fabrication of flexible ceramic membranes derived from hard Si 3 N 4 and soft MnO 2 nanowires // Ceramics International. 2020. V. 46. № 6. P. 8478–8482. https://doi.org/10.1016/j.ceramint.2019.11.226
  238. Khachaturyan R., Zhukov S., Schultheiß J., Galassi C., Reimuth C., Koruza J., Von Seggern H., Genenko Y.A. Polarization-switching dynamics in bulk ferroelectrics with isometric and oriented anisometric pores // J. of Physics D: Applied Physics. 2016. V. 50. № 4. ID 045303. https://doi.org/10.1088/1361-6463/aa519c
  239. Bosse P.W., Challagulla K.S., Venkatesh T.A. Effects of foam shape and porosity aspect ratio on the electromechanical properties of 3-3 piezoelectric foams // Acta Materialia. 2012. V. 60. № 19. P. 6464–6475. https://doi.org/ 10.1016/j.actamat.2012.07.051
  240. Challagulla K.S., Venkatesh T.A. Electromechanical response of piezoelectric foams // Acta Materialia. 2012. V. 60. № 5. P. 2111–2127. https://doi.org/10.1016/j.actamat.2011.12.036
  241. Jiang Q.Y., Cross L.E. Effects of porosity on electric fatigue behaviour in PLZT and PZT ferroelectric ceramics // J. of materials science. 1993. V. 28. P. 4536–4543. https://doi.org/10.1007/BF01154968
  242. Curecheriu L., Lukacs V.A., Padurariu L., Stoian G., Ciomaga C.E. Effect of porosity on functional properties of lead-free piezoelectric BaZrО. 15Ti0. 85O3 porous ceramics // Materials. 2020. V. 13. № 15. P. 3324. https://doi.org/10.3390/ma13153324
  243. Gao H.B., Qu Z.G., Feng X.B., Tao W.Q. Methane/air premixed combustion in a two-layer porous burner with different foam materials // Fuel. 2014. V. 115. P. 154–161. https://doi.org/10.1016/j.fuel.2013.06.023
  244. Howell J.R., Hall M.J., Ellzey J.L. Combustion of hydrocarbon fuels within porous inert media // Progress in Energy and Combustion Science. 1996. V. 22. № 2. P. 121–145. https://doi.org/10.1016/0360-1285(96)00001-9
  245. Trimis D. Stabilized combustion in porous media-applications of the porous burner technology in energy-and heat-engineering // Fluids 2000 conference and exhibit. 2000. С. 2298. https://doi.org/10.2514/6.2000-2298
  246. Trimis D., Durst F. Combustion in a porous medium-advances and applications // Combustion science and technology. 1996. V. 121. № 1–6. P. 153–168. https://doi.org/10.1080/00102209608935592
  247. Zheng C.-H., Cheng L.-M., Li T., Luo Z.-Y., Cen K.-F. Filtration combustion characteristics of low calorific gas in SiC foams // Fuel. 2010. V. 89. № 9. P. 2331–2337. https://doi.org/10.1016/j.fuel.2009.12.020
  248. Bubnovich V., Hernandez H., Toledo, M., Flores C. Experimental investigation of flame stability in the premixed propane-air combustion in two-section porous media burner // Fuel. 2021. V. 291. ID 120117. https://doi.org/10.1016/j.fuel.2020.120117
  249. Hashemi S.A., Alsulaiei Z.M.A., Mollamahdi M. Experimental analysis of the effects of porous wall on flame stability and temperature distribution in a premixed natural gas/air combustion // Heat Transfer. 2020. V. 49. № 4. P. 2282–2296. https://doi.org/10.1002/htj.21720
  250. Coquard R., Rochais D., Baillis D. Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures: contribution to the special issue “materials in fire” Guest Editor K. Ghazi Wakili // Fire technology. 2012. V. 48. P. 699–732. https://doi.org/10.1007/s10694-010-0167-8
  251. Rashad A.M. Lightweight expanded clay aggregate as a building material–An overview // Construction and Building Materials. 2018. V. 170. P. 757–775. https://doi.org/10.1016/j.conbuildmat.2018.03.009
  252. Saremi O., Ghaani M.R., Keshavarz L. English Niall J. Application of Porous Ceramics. A. Uthaman et al. (eds.). Advanced Functional Porous Materials, Engineering Materials. Springer Nature Switzerland AG? 2022. P. 499–537. https://doi.org/10.1007/978-3-030-85397-6_17

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main advantages and basic properties of porous ceramic materials.

Download (3KB)
3. Fig. 2. Classification of porous ceramic materials by pore size, areas of application and production methods.

Download (8KB)
4. Fig. 3. Schematic representation of the process of formation of porous ceramic material using a pore-forming agent.

Download (29KB)
5. Fig. 4. Microstructure of porous ceramic materials obtained by freeze drying.

Download (39KB)
6. Fig. 5. Stages of obtaining porous ceramic materials using the foam impregnation method.

Download (3KB)
7. Fig. 6. Morphology of porous silicon ceramic material with different pore diameters and porosity: (a) 5.7 mm / 78 vol.%; (b) 5.3 mm / 77.8 vol.%; (c) 4.4 mm / 77.3 vol.%; (d) 3.2 mm / 76.2 vol.%; (d) 2.4 mm / 74.9 vol.%; (e) 2.2 mm / 74.6 vol.%.

Download (26KB)
8. Fig. 7. Photomicrographs of a porous ceramic material based on Al2O3: (a) structure of the material; (b) interpore partition; (c) pore wall; as well as a demonstration of its properties: (d) good water permeability; (d) different buoyancy in ethanol (floats) and without an outer silicone layer (sinks).

Download (36KB)
9. Fig. 8. Schematic representation of the sol-gel method.

Download (41KB)
10. Fig. 9. Schematic representation of the method of impregnating porous blanks with gel.

Download (38KB)
11. Fig. 10. Schematic representation: (a) the process of manufacturing porous ceramic materials by the hollow sphere method; (b) SEM image of the compact; (c) SEM image of the finished porous ceramic material.

Download (47KB)
12. Fig. 11. SEM image of hollow spherical silica (a) and fly ash (b).

Download (49KB)
13. Fig. 12. Stages of formation of porous material in the process of sintering granulated particles of the charge.

Download (17KB)
14. Fig. 13. Topology of extruded and sintered ceramic (a) and fechral (b) honeycombs.

Download (28KB)
15. Fig. 14. Data on porosity (marked in color) and pore size distribution (arrows) in porous ceramic materials for different manufacturing technologies and application areas.

Download (58KB)
16. Fig. 15. Scheme of cation exchange.

Download (9KB)
17. Fig. 16. Selectivity of lithium ions through glass-ceramic membrane particles.

Download (32KB)
18. Fig. 17. Catalytic centers distributed over the surface of the carrier.

Download (20KB)
19. Fig. 18. Catalytic ozonizing ceramic membrane for water purification.

Download (43KB)
20. Fig. 19. Comparison of pollutant decomposition processes using a catalyst dispersed in feed water and a catalyst immobilized on a ceramic hollow fiber membrane.

Download (43KB)
21. Fig. 20. Mechanism of catalytic oxidation of toluene.

Download (37KB)
22. Fig. 21. Operation diagram of a solid oxide fuel cell (SOFC).

Download (33KB)
23. Fig. 22. Purification of water contaminated with oil using kaolin hollow fiber membranes.

Download (49KB)
24. Fig. 23. Mechanism of E. coli removal on Fe/TiO2 functionalized porous ceramic membrane.

Download (21KB)
25. Fig. 24. Filtration of bovine serum albumin on a hollow fiber porous membrane.

Download (21KB)
26. Fig. 25. Various structures with coordination numbers 4, 6, 8 and 12 respectively, manufactured by 3D printing.

Download (25KB)
27. Fig. 26. 3D printed structures with rotation angles of (a) 0°, (b) 30° and (c) 45°.

Download (24KB)

Copyright (c) 2024 Russian Academy of Sciences