Определение закономерностей совместного превращения одноатомного спирта алифатического ряда и парафина нормального строения в условиях каталитического крекинга на примере модельной смеси н-гексадекан–изопропанол

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Определены закономерности совместного крекинга одноатомного спирта алифатического ряда и парафина нормального строения на примере модельной смеси н-гексадекан–изопропанол. Анализ температурных зависимостей константы скорости крекинга н-гексадекана и н-гексадекана в смеси с изопропанолом указывает на эффект промотирования крекинга углеводорода при его совместном превращении с алифатическим спиртом. Данные о составе продуктов крекинга модельной смеси показывают, что характер распределения продуктов в присутствии алифатического спирта существенно не меняется. Основную часть газообразных продуктов составляет пропан-пропиленовая фракция. Методом DFT-моделирования показана разница в энергиях адсорбции н-гексадекана и изопропанола при температурах крекинга.

Полный текст

Доступ закрыт

Об авторах

Петр Владимирович Липин

Институт катализа СО РАН

Автор, ответственный за переписку.
Email: lipin@ihcp.ru
ORCID iD: 0000-0002-3337-6827

Центр новых химических технологий ИК СО РАН, к. х. н.

Россия, 644040, Омск

Владислав Анатольевич Ковеза

Институт катализа СО РАН

Email: lipin@ihcp.ru
ORCID iD: 0000-0003-3103-7925

Центр новых химических технологий ИК СО РАН

Россия, 644040, Омск

Олег Валерьевич Потапенко

Институт катализа СО РАН

Email: lipin@ihcp.ru
ORCID iD: 0000-0002-2755-7998

Центр новых химических технологий ИК СО РАН, к. х. н.

Россия, 644040, Омск

Список литературы

  1. Soongprasit K., Sricharoenchaikul V., Atong D. Pyrolysis of Millettia (Pongamia) pinnata waste for bio-oil production using a fly ash derived ZSM-5 catalyst // J. of Analytical and Applied Pyrolysis. 2019. V. 139. P. 239–249. https://doi.org/10.1016/j.jaap.2019.02.012
  2. Rahman M.M., Chai M., Sarker M., Nishu, Liu R. Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: analytical Py-GC/MS study // J. of the Energy Institute. 2020. V. 93. № 1. P. 425–435. https://doi.org/10.1016/j.joei.2019.01.014
  3. Karimi-Maleh H., Rajendran S., Vasseghian Y., Dra-goi E.-N. Advanced integrated nanocatalytic routes for converting biomass to biofuels: a comprehensive review // Fuel. 2022. V. 314. ID 122762. https://doi.org/10.1016/j.fuel.2021.122762
  4. Ishihara A., Tsukamoto T., Hashimoto T., Nasu H. Catalytic cracking of soybean oil by ZSM-5 zeolite-containing silica-aluminas with three layered micro-meso-meso-structure // Catalysis Today. 2018. V. 303. P. 123–129. https://doi.org/10.1016/j.cattod.2017.09.033
  5. Ameen M., Azizan M.T., Ramli A., Yusup S., Alnarabiji M.S. Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni–Mo/ γ-Al2O3 catalyst for green diesel production // Ultrasonics Sonochemistry. 2019. V. 51. P. 90–102. https://doi.org/10.1016/j.ultsonch.2018.10.011
  6. Yang X., Li X., Liu J., Rong L. Ni/phosphomolybdic acid immobilized on carbon nanotubes for catalytic cracking of Jatropha oil // Chemical Physics Letters. 2019. V. 720. P. 42–51. https://doi.org/10.1016/j.cplett.2019.02.008
  7. Zhu Z., Ma C., Zhang Y.-H.P. Co-utilization of mixed sugars in an enzymatic fuel cell based on an in vitro enzymatic pathway // Electrochimica Acta. 2018. V. 263. P. 184–191. https://doi.org/10.1016/j.electacta.2017.11.083
  8. Gomez J.A., Höffner K., Barton P.I. Production of biofuels from sunlight and lignocellulosic sugars using microbial consortia // Chemical Engineering Science. 2021. V. 239. ID 116615. https://doi.org/10.1016/j.ces.2021.116615
  9. Zhang X., Wu K., Yuan Q. Comparative study of microwave and conventional hydrothermal treatment of chicken carcasses: bio-oil yields and properties // Energy. 2020. V. 200. ID 117539. https://doi.org/10.1016/j.energy.2020.117539
  10. Encinar J.M., Nogales-Delgado S., Sánchez N. Pre-esterification of high acidity animal fats to produce biodiesel: a kinetic study // Arabian Journal of Chemistry. 2021. V. 14. № 4. ID 103048. https://doi.org/10.1016/j.arabjc.2021.103048
  11. Andreo-Martínez P., Ortiz-Martínez V.M., Salar-García M.J., Veiga-del-Baño J.M., Chica A., Quesada-Medina J. Waste animal fats as feedstock for biodiesel production using non-catalytic supercritical alcohol transesterification: a perspective by the PRISMA methodology // Energy for Sustainable Development. 2022. V. 69. P. 150–163. https://doi.org/10.1016/j.esd.2022.06.004
  12. Khatri K., Rathore M.S., Agrawal S., Jha B. Sugar contents and oligosaccharide mass profiling of selected red seaweeds to assess the possible utilization of biomasses for third-generation biofuel production // Biomass and Bioenergy. 2019. V. 130. ID 105392. https://doi.org/10.1016/j.biombioe.2019.105392
  13. Zhong J., Han J., Wei Y., Liu Zh. Catalysts and shape selective catalysis in the methanol-to-olefin (MTO) reaction // J. of Catalysis. 2021. V. 396. P. 23–31. https://doi.org/10.1016/j.jcat.2021.01.027
  14. Ilias S., Bhan A. Tuning the selectivity of methanol-to-hydrocarbons conversion on H-ZSM-5 by co-processing olefin or aromatic compounds // J. of Catalysis. 2012. V. 290. P. 186–192. https://doi.org/10.1016/j.jcat.2012.03.016
  15. Kukana R., Jakhar O.P. Effect of ternary blends diesel/n-propanol/composite biodiesel on diesel engine operating parameters // Energy. 2022. V. 260. ID 124970. https://doi.org/10.1016/j.energy.2022.124970
  16. Yang J., Xin Zh., He Q., Corcadden K., Niu H. An overview on performance characteristics of bio-jet fuels // Fuel. 2019. V. 237. P. 916–936. https://doi.org/10.1016/j.fuel.2018.10.079
  17. Li H., Zhao Y., Ji D., Zhao X., Li Ch., Guo P., Li G. Synthesis of hollow HZSM-5 zeolite-based catalysts and catalytic performance in MTA reaction // Microporous and Mesoporous Materials. 2022. V. 329. ID 111546. https://doi.org/10.1016/j.micromeso.2021.111546
  18. Abbot J. The influence of olefins on cracking reactions of saturated hydrocarbons // J. of Catalysis. 1990. V. 126. № 2. P. 684–688. https://doi.org/10.1016/0021-9517(90)90033-G
  19. Quintana-Solorzano R., Thybaut J.W., Marin G.B. Catalytic cracking and coking of (cyclo)alkane/1-octene mixtures on an equilibrium catalyst // Applied Catalysis A: General, A. 2006. V. 314. № 2. P. 184–199. https://doi.org/10.1016/j.apcata.2006.08.020
  20. Doronin V.P., Potapenko O.V., Lipin P.V. Sorokina T.P. Catalytic cracking of vegetable oils and vacuum gas oil // Fuel. 2013. V. 106. P. 757–765. https://doi.org/10.1016/j.fuel.2012.11.027
  21. Ситдикова А.В., Павлов М.Л., Рахимов М.Н. Интенсификация процесса каталитического крекинга линейными олефинами // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2008. № 4–5. С. 115–117.
  22. Van Speybroeck V., Hemelsoet K., Joos L., Waroquier M., Bell R.G., Catlow C.R.A. Advances in theory and their application within the field of zeolite chemistry // Chemical Society Reviews. 2015. V. 44. № 20. P. 7044–7111. https://doi.org/10.1039/C5CS00029G
  23. Van der Mynsbrugge J., Bell A.T. Challenges for the theoretical description of the mechanism and kinetics of reactions catalyzed by zeolites // J. of Catalysis. 2021. V. 404. P. 832–849. https://doi.org/10.1016/j.jcat.2021.08.048
  24. Louwen J.N., Simko S., Stanciakova K., Bulo R.E., Weckhuysen B.M., Vogt E.T. Role of rare earth ions in the prevention of dealumination of zeolite Y for fluid cracking catalysts // J. of Physical Chemistry C. 2020. V. 124. № 8. P. 4626–4636. https://doi.org/10.1021/acs.jpcc.9b11956
  25. Maihom T., Pantu P., Tachakritikul C., Probst M., Limtrakul J. Effect of the zeolite nanocavity on the reaction mechanism of n-hexane cracking: a density functional theory study // J. of Physical Chemistry C. 2010. V. 114. № 17. P. 7850–7856. https://doi.org/10.1021/jp911732p
  26. Niwa M., Suzuki K., Morishita N., Sastre G., Okumura K., Katada N. Dependence of cracking activity on the Brønsted acidity of Y zeolite: DFT study and experimental confirmation // Catalysis Science & Technology. 2013. V. 3. № 8. P. 1919–1927. https://doi.org/10.1039/C3CY00195D
  27. Доронин В.П., Сорокина Т.П. Химический дизайн катализаторов крекинга // Российский химический журнал. 2007. Т. 51. № 4. С. 23–29. [Doronin V.P., Sorokina T.P. Chemical design of cracking catalysts // Russ. J. of General Chemistry. 2007. V. 77. № 12. P. 2224-2231. https://doi.org/10.1134/S1070363207120274].
  28. International Zeolite Association [Электронный ресурс] http://www.iza-structure.org (дата обращения 14.07.23).
  29. Kühne T.D., Iannuzzi M., Del Ben M., Rybkin V.V., Seewald P., Stein F., Laino T., Khaliullin R.Z., Schütt O., Schiffmann F., Golze D., Wilhelm J., Chulkov S., Bani-Hashemian M.H., Weber V., Borštnik U., Taillefumier M., Jakobovits A.S., Lazzaro A., Pabst H., Müller T., Schade R., Guidon M., Andermatt S., Holmberg N., Schenter G.K., Hehn A., Bussy A., Belleflamme F., Tabacchi G., Glöß A., Lass M., Bethune I., Mundy C.J., Plessl C., Watkins M., VandeVondele J., Krack M., Hutter J. CP2K: An electronic structure and molecular dynamics software package-Quickstep: efficient and accurate electronic structure calculations // J. of Chemical Physics. 2020. V. 152. № 19. ID 194103. https://doi.org/10.1063/5.0007045
  30. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Physical Review Letters. 1996. V. 77. № 18. P. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
  31. Zhang Y., Yang W. Comment on “Generalized gradient approximation made simple” // Physical Review Letters. 1998. V. 80. № 4. P. 890. https://doi.org/10.1103/PhysRevLett.80.890
  32. Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu // J. of Chemical Physics. 2010. V. 132. № 15. ID 154104. https://doi.org/10.1063/1.3382344
  33. VandeVondele J., Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases // J. of Chemical Physics. 2007. V. 127. № 11. ID 114105. https://doi.org/10.1063/1.2770708
  34. VandeVondele J., Krack M., Mohamed F., Parrinello M., Chassaing T., Hutter J. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach // Computer Physics Communications. 2005. V. 167. № 2. P. 103–128. https://doi.org/10.1016/j.cpc.2004.12.014
  35. Krack M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals // Theoretical Chemistry Accounts. 2005. V. 114. P. 145–152. https://doi.org/10.1007/s00214-005-0655-y
  36. Spicher S., Grimme S. Robust atomistic modeling of materials, organometallic, and biochemical systems // Angewandte Chemie International Edition. 2020. V. 59. № 36. P. 15665–15673. https://doi.org/10.1002/anie.202004239
  37. Pracht P., Bohle F., Grimme S. Automated exploration of the low-energy chemical space with fast quantum chemical methods // Physical Chemistry Chemical Physics. 2020. V. 22. № 14. P. 7169–7192. https://doi.org/10.1039/C9CP06869D
  38. Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S. Extended tight-binding quantum chemistry methods // Wiley Interdisciplinary Reviews: Computational Molecular Science. 2021. V. 11. № 2. ID e1493. https://doi.org/10.1002/wcms.1493
  39. De Moor B. A., Ghysels A., Reyniers M.F., Van Speybroeck V., Waroquier M., Marin G.B. Normal mode analysis in zeolites: toward an efficient calculation of adsorption entropies // Journal of Chemical Theory and Computation. 2011. V. 7. № 4. P. 1090–1101. https://doi.org/10.1021/ct1005505
  40. Lu T., Chen Q. Shermo: a general code for calculating molecular thermochemistry properties // Computational and Theoretical Chemistry. 2021. V. 1200. ID 113249. https://doi.org/10.1016/j.comptc.2021.113249
  41. Ancheyta J. Chemical Reaction Kinetics: Concepts, Methods and Case Studies. Hoboken, NJ: John Wiley & Sons, Inc., 2017. 304 p.
  42. Gervasini A., Auroux A. Acidity and basicity of metal oxide surfaces II. Determination by catalytic decomposition of isopropanol // J. of Catalysis. 1991. V. 131. № 1. P. 190–198. https://doi.org/10.1016/0021-9517(91)90335-2
  43. Raseev S. Thermal and Catalytic Processes in Petroleum Refining. New York: Marcel Dekker, Inc., 2003. 920 p.
  44. Phillips C.B., Datta R. Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions // Industrial & Engineering Chemistry Research. 1997. V. 36. № 11. P. 4466–4475. https://doi.org/10.1021/ie9702542
  45. Ramasamya K.K., Wang Y. Ethanol conversion to hydrocarbons on HZSM-5: effect of reaction conditions and Si/Al ratio on the product distributions // Catalysis Today. 2014. V. 237. P. 89–99. https://doi.org/10.1016/j.cattod.2014.02.044
  46. Bocus M., Vanduyfhuys L., De Proft F., Weckhuysen B.M., Van Speybroeck V. Mechanistic characterization of zeolite-catalyzed aromatic electrophilic substitution at realistic operating conditions // JACS Au. 2022. V. 2. № 2. P. 502–514. https://doi.org/10.1021/jacsau.1c00544

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимость конверсии н-гексадекана (■) и н-гексадекана в модельной смеси н-гексадекан–изопропанол (■) от температуры крекинга.

Скачать (50KB)
3. Рис. 2. Температурная зависимость константы скорости крекинга н-гексадекана (■) и модельной смеси н-гексадекан–изопропанол (■).

Скачать (41KB)
4. Рис. 3. Схема совместного превращения н-гексадекана и изопропанола на цеолитных катализаторах (ZeOH–БКЦ цеолита).

Скачать (64KB)
5. Рис. 4. Углеводородный состав жидких продуктов крекинга н-гексадекана (а) и модельной смеси н-гексадекан–изопропанол (б): 350 (■), 400 (■), 450 (■) и 500°С (■), где н-П, изо-П – нормальные и изо-парафины; н-О, изо-О – нормальные и изо-олефины; Н – нафтены; мА и пА – моноароматические и полиароматические углеводороды.

Скачать (105KB)
6. Рис. 5. Конформеры н-гексадекана, полученные в результате конформационного анализа: (а) — конформация с наименьшей энергией; (б) — линейная конформация с наименьшей энергией. Цветовое обозначение атомов: белый — водород, голубой — углерод.

Скачать (97KB)
7. Рис. 6. Распределение конформеров н-гексадекана: (а) – от расстояния между терминальными атомами углерода C1…C16 и расстояния между центральным атомом С8 в молекуле н-гексадекана и БКЦ, расположенным на пресечении двух суперклеток, полученное в результате молекулярной динамики при температуре 698 K; (б) – от расстояния между терминальными атомами углерода C1…C16 и энергий в интервале от 0 до 5 кДж/моль, относительно энергии конформера с наименьшей энергией, полученного в результате конформационного анализа.

Скачать (215KB)
8. Рис. 7. Оптимизированная геометрия адсорбированного н-гексадекана (а) и изопропанола (б) на БКЦ цеолита Y, модифицированного лантаном. Цветовое обозначение атомов: белый — водород, голубой — углерод, желтый — кремний, нежно-розовый — алюминий, золотистый — лантан.

Скачать (384KB)

© Российская академия наук, 2024