Определение закономерностей совместного превращения одноатомного спирта алифатического ряда и парафина нормального строения в условиях каталитического крекинга на примере модельной смеси н-гексадекан–изопропанол
- Authors: Липин П.В.1, Ковеза В.А.1, Потапенко О.В.1
-
Affiliations:
- Институт катализа СО РАН
- Issue: Vol 64, No 2 (2024)
- Pages: 148–162
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655560
- DOI: https://doi.org/10.31857/S0028242124020041
- EDN: https://elibrary.ru/NDANGD
- ID: 655560
Cite item
Abstract
Определены закономерности совместного крекинга одноатомного спирта алифатического ряда и парафина нормального строения на примере модельной смеси н-гексадекан–изопропанол. Анализ температурных зависимостей константы скорости крекинга н-гексадекана и н-гексадекана в смеси с изопропанолом указывает на эффект промотирования крекинга углеводорода при его совместном превращении с алифатическим спиртом. Данные о составе продуктов крекинга модельной смеси показывают, что характер распределения продуктов в присутствии алифатического спирта существенно не меняется. Основную часть газообразных продуктов составляет пропан-пропиленовая фракция. Методом DFT-моделирования показана разница в энергиях адсорбции н-гексадекана и изопропанола при температурах крекинга.
Full Text

About the authors
Петр Владимирович Липин
Институт катализа СО РАН
Author for correspondence.
Email: lipin@ihcp.ru
ORCID iD: 0000-0002-3337-6827
Центр новых химических технологий ИК СО РАН, к. х. н.
Russian Federation, 644040, ОмскВладислав Анатольевич Ковеза
Институт катализа СО РАН
Email: lipin@ihcp.ru
ORCID iD: 0000-0003-3103-7925
Центр новых химических технологий ИК СО РАН
Russian Federation, 644040, ОмскОлег Валерьевич Потапенко
Институт катализа СО РАН
Email: lipin@ihcp.ru
ORCID iD: 0000-0002-2755-7998
Центр новых химических технологий ИК СО РАН, к. х. н.
Russian Federation, 644040, ОмскReferences
- Soongprasit K., Sricharoenchaikul V., Atong D. Pyrolysis of Millettia (Pongamia) pinnata waste for bio-oil production using a fly ash derived ZSM-5 catalyst // J. of Analytical and Applied Pyrolysis. 2019. V. 139. P. 239–249. https://doi.org/10.1016/j.jaap.2019.02.012
- Rahman M.M., Chai M., Sarker M., Nishu, Liu R. Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: analytical Py-GC/MS study // J. of the Energy Institute. 2020. V. 93. № 1. P. 425–435. https://doi.org/10.1016/j.joei.2019.01.014
- Karimi-Maleh H., Rajendran S., Vasseghian Y., Dra-goi E.-N. Advanced integrated nanocatalytic routes for converting biomass to biofuels: a comprehensive review // Fuel. 2022. V. 314. ID 122762. https://doi.org/10.1016/j.fuel.2021.122762
- Ishihara A., Tsukamoto T., Hashimoto T., Nasu H. Catalytic cracking of soybean oil by ZSM-5 zeolite-containing silica-aluminas with three layered micro-meso-meso-structure // Catalysis Today. 2018. V. 303. P. 123–129. https://doi.org/10.1016/j.cattod.2017.09.033
- Ameen M., Azizan M.T., Ramli A., Yusup S., Alnarabiji M.S. Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni–Mo/ γ-Al2O3 catalyst for green diesel production // Ultrasonics Sonochemistry. 2019. V. 51. P. 90–102. https://doi.org/10.1016/j.ultsonch.2018.10.011
- Yang X., Li X., Liu J., Rong L. Ni/phosphomolybdic acid immobilized on carbon nanotubes for catalytic cracking of Jatropha oil // Chemical Physics Letters. 2019. V. 720. P. 42–51. https://doi.org/10.1016/j.cplett.2019.02.008
- Zhu Z., Ma C., Zhang Y.-H.P. Co-utilization of mixed sugars in an enzymatic fuel cell based on an in vitro enzymatic pathway // Electrochimica Acta. 2018. V. 263. P. 184–191. https://doi.org/10.1016/j.electacta.2017.11.083
- Gomez J.A., Höffner K., Barton P.I. Production of biofuels from sunlight and lignocellulosic sugars using microbial consortia // Chemical Engineering Science. 2021. V. 239. ID 116615. https://doi.org/10.1016/j.ces.2021.116615
- Zhang X., Wu K., Yuan Q. Comparative study of microwave and conventional hydrothermal treatment of chicken carcasses: bio-oil yields and properties // Energy. 2020. V. 200. ID 117539. https://doi.org/10.1016/j.energy.2020.117539
- Encinar J.M., Nogales-Delgado S., Sánchez N. Pre-esterification of high acidity animal fats to produce biodiesel: a kinetic study // Arabian Journal of Chemistry. 2021. V. 14. № 4. ID 103048. https://doi.org/10.1016/j.arabjc.2021.103048
- Andreo-Martínez P., Ortiz-Martínez V.M., Salar-García M.J., Veiga-del-Baño J.M., Chica A., Quesada-Medina J. Waste animal fats as feedstock for biodiesel production using non-catalytic supercritical alcohol transesterification: a perspective by the PRISMA methodology // Energy for Sustainable Development. 2022. V. 69. P. 150–163. https://doi.org/10.1016/j.esd.2022.06.004
- Khatri K., Rathore M.S., Agrawal S., Jha B. Sugar contents and oligosaccharide mass profiling of selected red seaweeds to assess the possible utilization of biomasses for third-generation biofuel production // Biomass and Bioenergy. 2019. V. 130. ID 105392. https://doi.org/10.1016/j.biombioe.2019.105392
- Zhong J., Han J., Wei Y., Liu Zh. Catalysts and shape selective catalysis in the methanol-to-olefin (MTO) reaction // J. of Catalysis. 2021. V. 396. P. 23–31. https://doi.org/10.1016/j.jcat.2021.01.027
- Ilias S., Bhan A. Tuning the selectivity of methanol-to-hydrocarbons conversion on H-ZSM-5 by co-processing olefin or aromatic compounds // J. of Catalysis. 2012. V. 290. P. 186–192. https://doi.org/10.1016/j.jcat.2012.03.016
- Kukana R., Jakhar O.P. Effect of ternary blends diesel/n-propanol/composite biodiesel on diesel engine operating parameters // Energy. 2022. V. 260. ID 124970. https://doi.org/10.1016/j.energy.2022.124970
- Yang J., Xin Zh., He Q., Corcadden K., Niu H. An overview on performance characteristics of bio-jet fuels // Fuel. 2019. V. 237. P. 916–936. https://doi.org/10.1016/j.fuel.2018.10.079
- Li H., Zhao Y., Ji D., Zhao X., Li Ch., Guo P., Li G. Synthesis of hollow HZSM-5 zeolite-based catalysts and catalytic performance in MTA reaction // Microporous and Mesoporous Materials. 2022. V. 329. ID 111546. https://doi.org/10.1016/j.micromeso.2021.111546
- Abbot J. The influence of olefins on cracking reactions of saturated hydrocarbons // J. of Catalysis. 1990. V. 126. № 2. P. 684–688. https://doi.org/10.1016/0021-9517(90)90033-G
- Quintana-Solorzano R., Thybaut J.W., Marin G.B. Catalytic cracking and coking of (cyclo)alkane/1-octene mixtures on an equilibrium catalyst // Applied Catalysis A: General, A. 2006. V. 314. № 2. P. 184–199. https://doi.org/10.1016/j.apcata.2006.08.020
- Doronin V.P., Potapenko O.V., Lipin P.V. Sorokina T.P. Catalytic cracking of vegetable oils and vacuum gas oil // Fuel. 2013. V. 106. P. 757–765. https://doi.org/10.1016/j.fuel.2012.11.027
- Ситдикова А.В., Павлов М.Л., Рахимов М.Н. Интенсификация процесса каталитического крекинга линейными олефинами // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2008. № 4–5. С. 115–117.
- Van Speybroeck V., Hemelsoet K., Joos L., Waroquier M., Bell R.G., Catlow C.R.A. Advances in theory and their application within the field of zeolite chemistry // Chemical Society Reviews. 2015. V. 44. № 20. P. 7044–7111. https://doi.org/10.1039/C5CS00029G
- Van der Mynsbrugge J., Bell A.T. Challenges for the theoretical description of the mechanism and kinetics of reactions catalyzed by zeolites // J. of Catalysis. 2021. V. 404. P. 832–849. https://doi.org/10.1016/j.jcat.2021.08.048
- Louwen J.N., Simko S., Stanciakova K., Bulo R.E., Weckhuysen B.M., Vogt E.T. Role of rare earth ions in the prevention of dealumination of zeolite Y for fluid cracking catalysts // J. of Physical Chemistry C. 2020. V. 124. № 8. P. 4626–4636. https://doi.org/10.1021/acs.jpcc.9b11956
- Maihom T., Pantu P., Tachakritikul C., Probst M., Limtrakul J. Effect of the zeolite nanocavity on the reaction mechanism of n-hexane cracking: a density functional theory study // J. of Physical Chemistry C. 2010. V. 114. № 17. P. 7850–7856. https://doi.org/10.1021/jp911732p
- Niwa M., Suzuki K., Morishita N., Sastre G., Okumura K., Katada N. Dependence of cracking activity on the Brønsted acidity of Y zeolite: DFT study and experimental confirmation // Catalysis Science & Technology. 2013. V. 3. № 8. P. 1919–1927. https://doi.org/10.1039/C3CY00195D
- Доронин В.П., Сорокина Т.П. Химический дизайн катализаторов крекинга // Российский химический журнал. 2007. Т. 51. № 4. С. 23–29. [Doronin V.P., Sorokina T.P. Chemical design of cracking catalysts // Russ. J. of General Chemistry. 2007. V. 77. № 12. P. 2224-2231. https://doi.org/10.1134/S1070363207120274].
- International Zeolite Association [Электронный ресурс] http://www.iza-structure.org (дата обращения 14.07.23).
- Kühne T.D., Iannuzzi M., Del Ben M., Rybkin V.V., Seewald P., Stein F., Laino T., Khaliullin R.Z., Schütt O., Schiffmann F., Golze D., Wilhelm J., Chulkov S., Bani-Hashemian M.H., Weber V., Borštnik U., Taillefumier M., Jakobovits A.S., Lazzaro A., Pabst H., Müller T., Schade R., Guidon M., Andermatt S., Holmberg N., Schenter G.K., Hehn A., Bussy A., Belleflamme F., Tabacchi G., Glöß A., Lass M., Bethune I., Mundy C.J., Plessl C., Watkins M., VandeVondele J., Krack M., Hutter J. CP2K: An electronic structure and molecular dynamics software package-Quickstep: efficient and accurate electronic structure calculations // J. of Chemical Physics. 2020. V. 152. № 19. ID 194103. https://doi.org/10.1063/5.0007045
- Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Physical Review Letters. 1996. V. 77. № 18. P. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
- Zhang Y., Yang W. Comment on “Generalized gradient approximation made simple” // Physical Review Letters. 1998. V. 80. № 4. P. 890. https://doi.org/10.1103/PhysRevLett.80.890
- Grimme S., Antony J., Ehrlich S., Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu // J. of Chemical Physics. 2010. V. 132. № 15. ID 154104. https://doi.org/10.1063/1.3382344
- VandeVondele J., Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases // J. of Chemical Physics. 2007. V. 127. № 11. ID 114105. https://doi.org/10.1063/1.2770708
- VandeVondele J., Krack M., Mohamed F., Parrinello M., Chassaing T., Hutter J. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach // Computer Physics Communications. 2005. V. 167. № 2. P. 103–128. https://doi.org/10.1016/j.cpc.2004.12.014
- Krack M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals // Theoretical Chemistry Accounts. 2005. V. 114. P. 145–152. https://doi.org/10.1007/s00214-005-0655-y
- Spicher S., Grimme S. Robust atomistic modeling of materials, organometallic, and biochemical systems // Angewandte Chemie International Edition. 2020. V. 59. № 36. P. 15665–15673. https://doi.org/10.1002/anie.202004239
- Pracht P., Bohle F., Grimme S. Automated exploration of the low-energy chemical space with fast quantum chemical methods // Physical Chemistry Chemical Physics. 2020. V. 22. № 14. P. 7169–7192. https://doi.org/10.1039/C9CP06869D
- Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S. Extended tight-binding quantum chemistry methods // Wiley Interdisciplinary Reviews: Computational Molecular Science. 2021. V. 11. № 2. ID e1493. https://doi.org/10.1002/wcms.1493
- De Moor B. A., Ghysels A., Reyniers M.F., Van Speybroeck V., Waroquier M., Marin G.B. Normal mode analysis in zeolites: toward an efficient calculation of adsorption entropies // Journal of Chemical Theory and Computation. 2011. V. 7. № 4. P. 1090–1101. https://doi.org/10.1021/ct1005505
- Lu T., Chen Q. Shermo: a general code for calculating molecular thermochemistry properties // Computational and Theoretical Chemistry. 2021. V. 1200. ID 113249. https://doi.org/10.1016/j.comptc.2021.113249
- Ancheyta J. Chemical Reaction Kinetics: Concepts, Methods and Case Studies. Hoboken, NJ: John Wiley & Sons, Inc., 2017. 304 p.
- Gervasini A., Auroux A. Acidity and basicity of metal oxide surfaces II. Determination by catalytic decomposition of isopropanol // J. of Catalysis. 1991. V. 131. № 1. P. 190–198. https://doi.org/10.1016/0021-9517(91)90335-2
- Raseev S. Thermal and Catalytic Processes in Petroleum Refining. New York: Marcel Dekker, Inc., 2003. 920 p.
- Phillips C.B., Datta R. Production of ethylene from hydrous ethanol on H-ZSM-5 under mild conditions // Industrial & Engineering Chemistry Research. 1997. V. 36. № 11. P. 4466–4475. https://doi.org/10.1021/ie9702542
- Ramasamya K.K., Wang Y. Ethanol conversion to hydrocarbons on HZSM-5: effect of reaction conditions and Si/Al ratio on the product distributions // Catalysis Today. 2014. V. 237. P. 89–99. https://doi.org/10.1016/j.cattod.2014.02.044
- Bocus M., Vanduyfhuys L., De Proft F., Weckhuysen B.M., Van Speybroeck V. Mechanistic characterization of zeolite-catalyzed aromatic electrophilic substitution at realistic operating conditions // JACS Au. 2022. V. 2. № 2. P. 502–514. https://doi.org/10.1021/jacsau.1c00544
Supplementary files
