Промышленная компьютерная модель снижения потерь октанового числа очищенного бензина в процессе S Zorb

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Метод реактивной адсорбционной десульфуризации S Zorb - одна из основных технологий удаления серы из бензина в процессе жидкостного каталитического крекинга (FCC) на установках Китая, сопряженная, однако, с некоторым снижением октанового числа получаемого бензина (ОЧИ, RON). Для оптимизации рабочих переменных и уменьшения потерь прогнозированного октанового числа бензина (r-RON) были созданы три компьютерно-управляемые модели нейронной сети: с обратной передачей ошибки обучения (BPNN); с радиальной базисной функцией (RBFNN); с обобщенной регрессией (GRNN). Показано, что наилучшим является эффект модели с алгоритмом оптимизации роя частиц PSO-BPNN, обеспечивающей наибольшее снижение потерь r-RON на 48.55%. Методы исследования, использованные для создания компьютерно-управляемой модели снижения потерь r-RON, заслуживают применения на других блоках установки S Zorb.

Об авторах

Chen Bo

International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology

Email: petrochem@ips.ac.ru
200237, Shanghai, China

Wang Jie

International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology

Email: petrochem@ips.ac.ru
200237, Shanghai, China

Liu Song

SINOPEC Shanghai Gaoqiao Petrochemical Co

Email: petrochem@ips.ac.ru
200129, Shanghai, China

Ouyang Fusheng

International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology

Email: ouyfsh@ecust.edu.cn
200237, Shanghai, China

Xiong Da

International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology

Email: petrochem@ips.ac.ru
200237, Shanghai, China

Zhao Mingyang

SINOPEC Shanghai Gaoqiao Petrochemical Co

Автор, ответственный за переписку.
Email: petrochem@ips.ac.ru
200129, Shanghai, China

Список литературы

  1. Qiu L.M., Xiang Y.J., Xin M.D., Zou K., Zheng A.G., Xu G.T. Structural verification of nickel sulfide on spent S Zorb adsorbent as studied by HRTEM and XPS // J. Mol. Struct. 2020. V. 1202. P. 127215-127215. https://doi.org/10.1016/j.molstruc.2019.127215
  2. Ribeiro E Sousa L.R., Miranda T., e Sousa R.L., Tinoco J. The use of data mining techniques in rockburst risk assessment // Engineering. 2017. V. 3. P. 552-558. https://doi.org/10.1016/J.ENG.2017.04.002
  3. Ouyang F.S., Zhang J.H., Fang W.G. Optimizing product distribution in the heavy oil catalytic cracking (MIP) process // Petrol. Sci. Technol. 2017. V. 35. P. 1315-1320. https://doi.org/10.1080/10916466.2017.1297826
  4. Sadighi S., Mohaddecy R.S., Norouzian A. Optimizing an industrial scale naphtha catalytic reforming plant using a hybrid artificial neural network and genetic algorithm technique // Bull. Chem. React. Eng. Catal. 2015. V. 10. P. 210-220. https://doi.org/10.9767/bcrec.10.2.7171.210-220
  5. Zhu W.B., Webb Z.T., Mao K., Romagnoli J. A deep learning approach for process data visualization using t-distributed stochastic neighbor embedding // Ind. Eng. Chem. Res. 2019. V. 58. P. 9564-9575. https://doi.org/10.1021/acs.iecr.9b00975
  6. Chang P., Li Z.Y., Wang G.M., Wang P. An effective deep recurrent network with high-order statistic information for fault monitoring in wastewater treatment process // Expert Syst. Appl. 2020. V. 167. P. 114141. https://doi.org/10.1016/j.eswa.2020.114141
  7. Martínez-Martínez J.M., Escandell-Montero P., Soria-Olivas E., Martín-Guerrero J.D., Serrano-López A.J. A new visualization tool for data mining techniques // Prog. Artif. Intell. 2016. V. 5. P. 137-154. https://doi.org/10.1007/s13748-015-0079-4
  8. Chang Z.H., Zhang Y., Chen W.B. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform // Energy. 2019. V. 187. P. 115804. https://doi.org/10.1016/j.energy.2019.07.134
  9. Luor D.C. A comparative assessment of data standardization on support vector machine for classification problems // Intell. Data Anal. 2015. V. 19. P. 529-546. https://doi.org/10.3233/IDA-150730
  10. Duan H.M., Pang X.Y. A multivariate grey prediction model based on energy logistic equation and its application in energy prediction in China // Energy. 2021. V. 229. P. 120716. https://doi.org/10.1016/J.ENERGY.2021.120716
  11. Fang S.E., Chen S. Model-free damage localization of structures using wavelet based grey relational analysis // Smart Mater. Struct. 2020. V. 29. № 8. P. 085046. https://doi.org/10.1088/1361-665X/ab99da
  12. Cai Y.G., Xi M.C., Xue Q.H. Study on the applications of neural networks for processing deformation monitoring data // Appl. Mech. Mater. 2014. V. 501-504. P. 2149-2153. https://doi.org/10.4028/www.scientific.net/AMM.501-504.2149
  13. Zhang E.L., Hou L., Shen C., Shi Y.L., Zhang Y.X. Sound quality prediction of vehicle interior noise and mathematical modeling using a back propagation neural network (BPNN) based on particle swarm optimization (PSO) // Meas. Sci. Technol. 2016. V. 27. P. 015801. https://doi.org/10.1088/0957-0233/27/1/015801
  14. Liu Xm., Liu Jc., Xu Yr. Motion control of underwater vehicle based on least disturbance BP algorithm // J. Marine. Sci. Appl. 2002. V. 1. P. 16-20. https://doi.org/10.1007/BF02921411
  15. Potts M.A.S., Broomhead D.S. Time series prediction with a radial basis function neural network // Proc. SPIE. 1991. V. 1565. P. 255-266. https://doi.org/10.1117/12.49782
  16. Zhao Y.P., Zhou X.L. K-means clustering algorithm and its improvement research // J. Phys.: Conf. Ser. 2021. V. 1873. P. 012074. https://doi.org/10.1088/1742-6596/1873/1/012074
  17. Yousef W.A. Estimating the standard error of cross-validation-based estimators of classifier performance // Pattern Recognit. Lett. 2021. V. 146. P. 115-125. https://doi.org/10.1016/J.PATREC.2021.02.022
  18. Liang F., Gao J., Xu L. Thermal performance investigation of the miniature revolving heat pipes using artificial neural networks and genetic algorithms // Int. J. Heat Mass Transf. 2020. V. 151. P. 119394. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119394
  19. Ying J.L., Xiao J.C. Simulated annealing algorithm improved BP learning algorithm // Appl. Mech. Mater. 2014. V. 513-517. P. 734-737. https://doi.org/10.4028/www.scientific.net/AMM.513-517.734
  20. Wang H.L., Hu Z.B., Sun Y.Q., Su Q.H., Xia X.W. Modified backtracking search optimization algorithm inspired by simulated annealing for constrained engineering optimization problems // Comput. Intell. Neurosci. 2018. V. 2018. article ID 9167414. 27 pp. https://doi.org/10.1155/2018/9167414

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023