Методы измерения глубины проникновения поля терагерцевых поверхностных плазмон-поляритонов в воздух
- Authors: Кукотенко В.Д.1, Герасимов В.В.1,2, Лемзяков A.Г.1,3, Никитин A.К.4
-
Affiliations:
- Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук
- Новосибирский государственный университет
- Центр коллективного пользования “Сибирский кольцевой источник фотонов” Института катализа им. Г. К. Борескова Сибирского отделения Российской академии наук
- Научно-технологический центр уникального приборостроения Российской академии наук
- Issue: No 1 (2025)
- Pages: 81-91
- Section: ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА
- URL: https://jdigitaldiagnostics.com/0032-8162/article/view/689736
- DOI: https://doi.org/10.31857/S0032816225010115
- EDN: https://elibrary.ru/GHMCDA
- ID: 689736
Cite item
Abstract
Предложены и апробированы два метода измерения глубины проникновения поля поверхностных плазмон-поляритонов (ППП) с использованием квазимонохроматического терагерцевого излучения новосибирского лазера на свободных электронах (λ = 141 мкм): зондовый метод с модуляцией излучения обтюратором или модуляцией дифрагирующей доли поля ППП колебаниями внедренного в него зонда и метод экранирования, регистрирующего интенсивность ППП, прошедших под металлическим экраном. В обоих методах для уменьшения доли паразитных засветок от объемных волн предлагается использовать излом поверхности образца или элементы преобразования (излучения в ППП и обратно) цилиндрической формы. Результаты экспериментов по оценке глубины проникновения поля ППП в воздух обоими методами согласуются между собой. Выявлены достоинства и недостатки этих методов, а также условия их применения при работе с образцами, содержащими и не содержащими диэлектрическое покрытие.
Full Text

About the authors
В. Д. Кукотенко
Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук
Author for correspondence.
Email: V.D.Kukotenko@inp.nsk.su
Russian Federation, 630090, Новосибирск, просп. Академика Лаврентьева, 11
В. В. Герасимов
Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук; Новосибирский государственный университет
Email: V.D.Kukotenko@inp.nsk.su
Russian Federation, 630090, Новосибирск, просп. Академика Лаврентьева, 11; 630090, Новосибирск, ул. Пирогова, 1
A. Г. Лемзяков
Институт ядерной физики им. Г.И. Будкера Сибирского отделения Российской академии наук; Центр коллективного пользования “Сибирский кольцевой источник фотонов” Института катализа им. Г. К. Борескова Сибирского отделения Российской академии наук
Email: V.D.Kukotenko@inp.nsk.su
Russian Federation, 630090, Новосибирск, просп. Академика Лаврентьева, 11; 630559, Новосибирская обл., р. п. Кольцово, просп. Никольский, 1
A. К. Никитин
Научно-технологический центр уникального приборостроения Российской академии наук
Email: V.D.Kukotenko@inp.nsk.su
Russian Federation, 117342, Москва, ул. Бутлерова, 15
References
- Zhang H.C., Zhang L.P., He P.H., Xu J., Qian C., Garcia-Vidal F.J., Cui T.J. // Light Sci. Appl. 2020. V. 9. P. 113. https://doi.org/10.1038/s41377-020-00355-y
- Berger C.E.H., Kooyman R.P.H., Greve J. // Rev. Sci. Instrum. 1994. V. 65. P. 2829. https://doi.org/10.1063/1.1144623
- Maier S.A. Plasmonics: Fundamentals and Applications. New York: Springer, 2007.
- Mynbaev D.K., Sukharenko V. // Proc. ICCDCS-2014. IEEE. 2014. P. 1. https://doi.org/10.1109/ICCDCS.2014.7016180
- Pang X., Ozolins O., Jia S. et al. // J. Lightwave Technol. 2022. V. 40. P. 3149. https://doi.org/10.1109/JLT.2022.3153139
- Pechprasarn S., Somekh M.G. // J. Microsc. 2012. V. 246. P. 287. https://doi.org/10.1111/j.1365-2818.2012.03617.x
- Sengupta K., Nagatsuma T., Mittleman D.M. // Nat. Electron. 2018. V. 1. P. 622. https://doi.org/10.1038/s41928-018-0173-2
- Sorger V.J., Oulton R.F., Ma R.-M., Zhang X. // MRS Bulletin. 2012. V. 37. P. 728. https://doi.org/10.1557/mrs.2012.170
- Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A., Kotelnikov I.A. // Appl. Sci. 2023. V. 13. P. 7898. https://doi.org/10.3390/app13137898
- Zhang X., Xu Q., Xia L., Li Y., Gu J., Tian Z., Ouyang C., Han J., Zhang W. // Adv. Photon. 2020. V. 2. P. 1. https://doi.org/10.1117/1.AP.2.1.014001
- Ordal M.A., Long L.L., Bell R.J., Bell S.E., Bell R.R., Alexander R.W., Ward C.A. // Appl. Opt. 1983. V. 22. P. 1099. https://doi.org/10.1364/AO.22.001099
- Pandey S., Liu S., Gupta B., Nahata // Photon. Res. 2013. V. 1. P. 148. https://doi.org/10.1364/PRJ.1.000148
- Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A., Kotelnikov I.A. // Appl. Sci. 2023. V. 13. P. 7898. https://doi.org/10.3390/app13137898
- Gerasimov V.V., Knyazev B.A., Nikitin A.K., Zhizhin G.N. // Appl. Phys. Lett. 2011. V. 98. 171912. https://doi.org/10.1063/1.3584130
- Auston D.H., Cheung K.P. // J. Opt. Soc. Am. B. 1985. V. 2. P. 606. https://doi.org/10.1364/JOSAB.2.000606
- Zhou D., Parrott E.P.J., Paul D.J., Zeitler J.A. // J. Appl. Phys. 2008. 104. 053110. https://doi.org/10.1063/1.2970161
- Han P.Y., Tani M., Usami M., Kono S., Kersting R., Zhang X.-C. // J. Appl. Phys. 2001. V. 89. P. 2357. https://doi.org/10.1063/1.1343522
- Isaac T.H., Barnes W.L., Hendry E. // Appl. Phys. Lett. 2008. V. 93. 241115. https://doi.org/10.1063/1.3049350
- Nazarov M.M., Shkurinov A.P., Garet F., Coutaz J.-L. // IEEE Trans. THz Sci. Technol. 2015. V. 5. P. 680. https://doi.org/10.1109/TTHZ.2015.2443562
- Nikitin A.K., Khitrov O.V., Gerasimov V.V., Khasanov I.S., Ryzhova T.A. // J. Phys.: Conf. Ser. 2019. V. 1421. 012013. https://doi.org/10.1088/1742-6596/1421/1/012013
- Gerasimov V.V., Vanda V., Lemzyakov A., Ivanov A., Azarov I., Nikitin A. // SPIE: Beijing, China, November 26. 2023. P. 11. https://doi.org/10.1117/12.2687247
- Gerasimov V.V., Nikitin A.K., Lemzyakov A.G. // Instrum. Exp. Tech. 2023. V. 66. P. 423. https://doi.org/10.1134/S0020441223030053
- Mathar R.J. // J. Opt. A: Pure Appl. Opt. 2007. V. 9. P. 470. https://doi.org/10.1088/1464-4258/9/5/008
- Gerasimov V.V., Knyazev B.A., Lemzyakov A.G., Nikitin A.K., Zhizhin G.N. // J. Opt. Soc. Am. B 2016. V. 33. P. 2196. https://doi.org/10.1364/JOSAB.33.002196
- Jeon T.-I., Grischkowsky D. // App. Phys. Lett. 2006. V. 88. 061113. https://doi.org/10.1063/1.2171488
- Gong M., Jeon T.-I., Grischkowsky D. // Opt. Express. 2009. V. 17. P. 17088. https://doi.org/10.1364/OE.17.017088
- Герасимов В.В., Жижин Г.Н., Князев Б.А., Котельников И.А., Митина Н.А. // Изв. РАН. Сер. физ. 2013. T. 77. C. 1333. https://doi.org/10.7868/S0367676513090147
- Shevchenko O.A., Vinokurov N.A., Arbuzov V.S., Chernov K.N., Davidyuk I.V., Deichuly O.I., Dementyev E.N., Dovzhenko B.A., Getmanov Ya.V., Gorbachev Ya.I., Knyazev B.A., Kolobanov E.I., Kondakov A.A., Kozak V.R., Kozyrev E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 228.
- Koteles E.S., McNeill W.H. // Int. J. Infrared Milli Waves. 1981. V. 2. P. 361. https://doi.org/10.1007/BF01007040
- Knyazev B.A., Gerasimov V.V., Nikitin A.K., Azarov I.A., Choporova Yu.Yu. // J. Opt. Soc. Am. B. 2019. V. 36. P. 1684. https://doi.org/10.1364/JOSAB.36.001684
- https://www.tydexoptics.com/ru/
- Gerasimov V.V., Nikitin A.K., Lemzyakov A.G., Azarov I.A. // Photonics. 2023. V. 10. P. 917. https://doi.org/10.3390/photonics10080917
- Knyazev B.A., Cherkassky V.S., Choporova Y.Yu., Gerasimov V.V., Vlasenko M.G., Dem’yanenko M.A., Esaev D.G. // J. Infrared Milli. Terahz. Waves. 2011. V. 32. P. 1207. https://doi.org/10.1007/s10762-011-9773-x
- Palik E.D. Handbook of Optical Constants of Solids V. 1. Cambridge: Academic Press, 2016.
Supplementary files
