To the Charged Surface Instability Calculation of a Stratified Fluid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The conditions for the development of instability of the charged surface of a stratified fluid in relation to an overload of surface charge are calculated analytically. A rule for selecting the roots of the dispersion equation is formulated to correctly describe the spectrum of wave motions on the free surface.

Full Text

Restricted Access

About the authors

D. F. Belonozhko

P.G. Demidov Yaroslavl State University

Author for correspondence.
Email: belonozhko@mail.ru
Russian Federation, Yaroslavl

References

  1. Chashechkin Yu.D., Ochirov A.A. Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field // Axioms, 2022, vol. 11, no. 8, pp. 402.
  2. Chashechkin Y.D., Ochirov A.A. Free-surface two-dimensional periodic disturbances in various models of fluid // Dokl. RAN, 2023, vol. 513, no. 1, pp. 95–102.
  3. Ochirov A.A., Chashechkin Y.D. Two-dimensional periodic waves in an inviscid continuously stratified fluid // Izv. RAN. Atmos.&Oceanic Phys., 2022, vol. 58, no. 5, pp. 450–458.
  4. Makarenko N.I., Maltseva J.L., Cherevko A.A. Solitary waves in a two-layer fluid with piecewise exponential stratification // Fluid Dyn., 2023, vol. 58, no. 7, pp. 1235–1245.
  5. Chashechkin Y., Ochirov A., Lapshina K.Y. Surface waves along the interface of stably stratified liquids // Phys.-Chem. Kin. in Gas Dyn., 2022, vol. 23, iss. 6. http://chemphys.edu.ru/issues/2022-23-6/articles/1028/
  6. Tonks L. A theory of liquid surface rupture by a uniform electric field // Phys. Rev., 1935, vol. 48, no. 6, pp. 562.
  7. Frenkel Y.I. On Tonks’ theory of fluid surface breakup by a constant electric field in a vacuum // Zh. Exp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 347–350.
  8. Taylor G.I., McEwan A.D. The stability of a horizontal fluid interface in a vertical electric field // J. of Fluid Mech., 1965, vol. 22, no. 1, pp. 1–15.
  9. Fernández de La Mora J. The fluid dynamics of Taylor cones // Annu. Rev. Fluid Mech., 2007, vol. 39, pp. 217–243.
  10. Zhang X., Xie L., Wang X., Shao Z., Kong B.Electrospinning super–assembly of ultrathin fibers from single-to multi-Taylor cone sites // Appl. Mater. Today, 2022, vol. 26, pp. 101272.
  11. Landau L.D., Lifschitz E.M., Pitaevskii L.P. Electrodynamics of Continuous Media: Course of Theoretical Physics. Vol. 8. Elsevier Sci., 1995. 460 p.
  12. Ochirov A.A., Chashechkin Y.D. Wave motion in a viscous homogeneous fluid with a surface electric charge // Fluid Dyn., 2023, vol. 58, no. 7, pp. 1318–1327.
  13. Grigor’ev A.I., Shiryaeva S.O., Koromyslov V.A. On some regularities in the implementation of the electrostatic instability of a charged liquid surface in a pool of finite dimensions // Fluid Dyn., 2023, vol. 58, no. 7, pp. 1328–1340.
  14. Vallis G.K. Atmospheric and Oceanic Fluid Dynamics. Cambridge: Univ. Press, 2017. 995 p.
  15. Landau L.D., Lifschitz E.M. Fluid Mechanics. Course of Theoretical Physics. Vol. 6. Pergamon, 1987. 539 p.
  16. Rosensweig R.E. Ferrohydrodynamics. Courier Corp., 2013. 368 p.
  17. Le Méhauté B. An Introduction to Hydrodynamics and Water Waves. Berlin: Springer, 1976. 323 p.
  18. Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon, 1961. 654 p.
  19. Drazin P.G. Introduction to Hydrodynamic Stability. Cambridge: Univ. Press, 2002. vol. 32, 258 p.
  20. Lavrentev M.A., Shabat B.V. Methods of the Theory of Function of Complex Variable. Moscow: Nauka, 1987, 544 p. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences