Contact with Intermolecular Interaction Forces for a Viscoelastic Layer (Self-Consistent Approach): The Energy Balance for the System of Indenter–Layer–Substrate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The contact of an infinitely extended plane indenter and a viscoelastic layer in the framework of the Derjaguin self-consistent approach with the surface (traditional formulation) and bulk (refined formulation) application of intermolecular interaction forces is considered. Corresponding models of the contact interaction are proposed, for which the energy balance in the indenter–layer–substrate system is derived and validated. The balance takes into account viscous energy dissipation, potential energy of elastic deformation, field energy, as well as the energy dissipated in jump of the contact gap.

Full Text

Restricted Access

About the authors

I. A. Soldatenkov

Institute for Problems in Mechanics of the Russian Academy of Sciences

Author for correspondence.
Email: iasoldat@hotmail.com
Russian Federation, Moscow

References

  1. Derjaguin B. Untersuchungen über die Reibung und Adhäsion, IV. Theorie des Anhaftens kleiner Teilchen // Kolloid-Zeitschrift, 1934, Bd. 69, H. 2, S. 155–164.
  2. Johnson K.L., Kendall K., Roberts A.D. Surface energy and the contact of elastic solids // Proc. Roy. Soc. London. Ser. A, 1971, vol. 324, no. 1558, pp. 301–313.
  3. Derjaguin B.V., Muller V.M., Toporov Yu.P. Effect of contact deformations on the adhesion of particles // J. Colloid Interface Sci., 1975, vol. 53, no. 2, pp. 314–326.
  4. Sridhar I., Johnson K.L., Fleck N.A. Adhesion mechanics of the surface force apparatus // J. Phys. D: Appl. Phys., 1997, vol. 30, no. 12, pp. 1710–1719.
  5. Sergici A.O., Adams G.G., Müftü S. Adhesion in the contact of a spherical indenter with a layered elastic half-space // J. Mech. Phys. Solids, 2006, vol. 54, no. 9, pp. 1843–1861.
  6. Reedy E.D. Thin-coating contact mechanics with adhesion // J. Mater. Res., 2006, vol. 21, no. 10, pp. 2660–2668.
  7. Borodich F.M., Galanov B.A., Perepelkin N.V., Prikazchikov D.A. Adhesive contact problems for a thin elastic layer: Asymptotic analysis and the JKR theory // Math.&Mech. of Solids, 2018, vol. 24, no. 5, pp. 1405–1424.
  8. Greenwood J.A., Johnson K.L. The mechanics of adhesion of viscoelastic solids // Phil. Mag. A, 1981, vol. 43, no. 3, pp. 697–711.
  9. Goryacheva I.G., Gubenko M.M., Makhovskaya Yu.Yu. Sliding of a spherical indenter on a viscoelastic foundation with the forces of molecular attraction taken into account // J. of Appl. Mech.&Tech. Phys., 2014, vol. 55, no. 1, pp. 81–88.
  10. Lin Y.Y., Hui C.Y. Mechanics of contact and adhesion between viscoelastic spheres: An analysis of hysteresis during loading and unloading // J. Polymer Sci. Pt. B: Polymer Phys., 2002, vol. 40, pp. 772–793.
  11. Haiat G., Phan Huy M.C., Barthel E. The adhesive contact of viscoelastic spheres // J. Mech. & Phys. of Solids, 2003, vol. 51, no. 1, pp. 69–99.
  12. Muller V.M., Yushchenko V.S., Derjaguin B.V. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane // J. Coll. Interface Sci., 1980, vol. 77, no. 1, pp. 91–101.
  13. Attard P., Parker J.L. Deformation and adhesion of elastic bodies in contact // Phys. Rev. A, 1992, vol, 46. no, 12, pp. 7959–7971.
  14. Greenwood J.A. Adhesion of elastic spheres // Proc. R. Soc. Lond. A, 1997, vol. 453, no. 1961, pp. 1277–1297.
  15. Soldatenkov I.A. The use of the method of successive approximations to calculate an elastic contact in the presence of molecular adhesion // JAMM, 2012, vol. 76, no. 5, pp. 597–603.
  16. McMeeking R.M. A Maxwell stress for material interactions // J. Colloid Interface Sci., 1998, vol. 199, no. 2, pp. 187–196.
  17. Sauer R.A., Li S. A contact mechanics model for quasi-continua // Int. J. Numer. Meth. Engng., 2007, vol. 71, no. 8, pp. 931–962.
  18. He L.H. Stress and deformation in soft elastic bodies due to intermolecular forces // J. Mech. Phys. Solids, 2013, vol. 61, no. 6, pp.1377–1390.
  19. Soldatenkov I.A. The contact problem with the bulk application of intermolecular interaction forces (a refined formulation) // JAMM, 2013, vol. 77, no. 6, pp. 629–641.
  20. Dolgov N.A., Romashin S.N., Frolenkova L.Yu., Shorkin V.S. A model of contact of elastic bodies with account for their adhesion // Int. J. Nanomech. Sci.&Tech., 2015, vol. 6, no. 2, pp. 117–133.
  21. Jagota A., Argento C. An intersurface stress tensor // J. Colloid Interface Sci., 1997, vol. 191, no. 2, pp. 326–336.
  22. Argento C., Jagota A., Carter W.C. Surface formulation for molecular interactions of macroscopic bodies // J. Mech. Phys. Solids, 1997, vol. 45, no. 7, pp. 1161–1183.
  23. Wu J.-J. The Jump-to-contact distance in atomic force microscopy measurement // J. of Adhesion, 2010, vol. 86, no. 11, pp. 1071–1085.
  24. Goryacheva I.G., Makhovskaya Yu.Yu. Adhesive interaction of elastic bodies // JAMM, 2001, vol. 65, no. 2, pp. 273–282.
  25. Kesari H., Lew A.J. Effective macroscopic adhesive contact behavior induced by small surface roughness // J. Mech. Phys. Solids, 2011, vol. 59, pp. 2488–2510.
  26. Ciavarella M., Greenwood J.A., Barber J.R. Effect of Tabor parameter on hysteresis losses during adhesive contact // J. Mech. Phys. Solids, 2017, vol. 98, pp. 236–244.
  27. Soldatenkov I.A. Contact with intermolecular interaction forces for a viscoelastic layer (self-consistent approach): Calculation of the stress-strain state and energy dissipation // Mech. of Solids, 2020, vol. 55, no. 7, pp. 159–174.
  28. Soldatenkov I.A. Contact with intermolecular interactions for a viscoelastic layer (self-consistent approach): feature analysis of the indenter approach/retract process // Mech. of Solids, 2021, vol. 56, no. 7, pp. 1259–1276.
  29. Soldatenkov I.A. Contact with intermolecular interaction for a viscoelastic layer (self-consistent approach): Energy dissipation under indentation and friction force // Mech. of Solids, 2022, vol. 57, no. 7, pp. 1701–1716.
  30. Churaev N.V., Derjaguin B.V., Muller V.M. Surface Forces. N.Y.: Springer, 1987.
  31. Handbook of Micro/Nanotribology / Ed. by Bhushan B. Boca Raton: CRC Press LLC, 1999.
  32. Israelachvili J.N. Intermolecular and Surface Forces. London: Academic, 2011.
  33. Kaplan I.G. Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials. Chichester: Wiley, 2006.
  34. Soldatenkov I.A. The contact problem with the bulk application of intermolecular interaction forces: distinctive features of the subsurface stresses // JAMM, 2016, vol. 80, no. 6, pp. 518–526.
  35. Christensen R.M. Theory of Viscoelasticity. An Introduction. N.Y.: Acad. Press, 1971.
  36. Ogibalov P.M., Lomakin V.A., Kishkin B.P. Mechanics of Polymers. Moscow: MSU Pub., 1975. (in Russian)
  37. Adamov A.A., Matveenko V.P., Trufanov N.A., Shardakov I.N. Methods of Applied Viscoelasticity. Ekaterinburg: Ural Branch RAS, 2003. (in Russian)
  38. Fikhtengolts G.M. Course of Differential and Integral Calculus. Vol. 3. Moscow: Fizmatlit, 2003. (in Russian)
  39. Takahashi K., Onzawa T. Effect of the stiffness of the measurement system on adhesion force curves in the elastic continuum limit // J. Adhesion Sci. Technol., 1996, vol. 10, no. 1, pp. 17–31.
  40. Johnson K.L. Mechanics of adhesion // Tribol. Int., 1998, vol. 31, no. 8, pp. 413–418.
  41. Rabotnov Yu.N. Elements of Hereditary Solid Mechanics. Moscow: Mir, 1980.
  42. Soldatenkov I.A. Calculation of the deformation component of the force of friction for a standard elastoviscous base // J. Friction&Wear, 2008, vol. 29, no. 1, pp. 7–14.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Contact interaction of an indenter with a base consisting of a viscoelastic layer and a completely rigid substrate

Download (25KB)
3. Fig. 2. Time dependences of the contact gap in the indenter inlet (a) and outlet (b) modes (traditional problem formulation). The arrows show the contact gap jumps

Download (13KB)
4. Fig. 3. Characteristic graph of the function and values at indenter approach

Download (14KB)
5. Fig. 4. Scheme of sliding of a body on a surface with a step (the lengths of springs are shortened for clarity)

Download (18KB)

Copyright (c) 2024 Russian Academy of Sciences