Application of Multipole Decomposition for Sonic Boom Propagation Problems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the present work a modification of the multipole decomposition method is developed, which makes it possible to relate the overpressure distribution in the near-field of a supersonic transport (SST) with a far-field distribution, which is needed for the solution of sonic boom propagation problem from SST. A generalization of the method for solving the integral equations arising from multipole decomposition is performed. An algorithm for multipole correction of near-field overpressure signatures obtained in numerical simulations has been developed and tested.

About the authors

A. A. Kornyakov

Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky

Email: vit_soudakov@tsagi.ru
Russia, Zhukovsky

V. G. Soudakov

Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky

Author for correspondence.
Email: vit_soudakov@tsagi.ru
Russia, Zhukovsky

A. S. Shcheglov

Central Aerohydrodynamic Institute named after prof. N.E. Zhukovsky

Email: vit_soudakov@tsagi.ru
Russia, Zhukovsky

References

  1. Landau L.D. On shock waves at long distances from their origin // PMM, 1945, vol. 9, no. 4, pp. 286–292. (in Russian)
  2. Yamashita R., Wutschitz L., Nikiforakis N. A full-field simulation methodology for sonic boom modelling on adaptive Cartesian cut-cell meshes // J. Comput. Phys., 2020, vol. 408, no. 109271, pp. 1–19.
  3. Chernyshev S.L. Sound Impact. Moscow: Nauka, 2011. 351 p. (in Russian)
  4. Zhilin Yu.L. On sonic boom // Uch. Zap. TsAGI, 1971, vol. 2, no. 3, pp. 1–11. (in Russian)
  5. Thomas C.L. Extrapolation of sonic boom pressure signatures by the waveform parameter method // NASA TN D-6832, 1972, 35 p.
  6. Chernyshev S.L., Gorbovskoy V.S., Kazhan А.V., Korunov А.О. Re-entry vehicle sonic boom issue: modelling and calculation results in windy atmosphere based on the augmented Burgers equation // Acta Astron., 2022, vol. 194, pp. 450–460.
  7. Maglieri D.J., Bobbitt P.J., Plotkin K.J., Shepherd K.P., Coen P.G., Richwine D.M. Sonic boom. Six decades of research // NASA-SP-2014-622, 2014, 539 p.
  8. Page J.A., Plotkin K.J. An efficient method for incorporating computational fluid dynamics into sonic boom prediction // AIAA Paper 1991-3275, 1991.
  9. George A. Reduction of sonic boom by azimuthal redistribution of overpressure // AIAA J., 1969, vol. 7, no. 2, pp. 291–297.
  10. Rallabhandi S.K., Mavris D.N. New computational procedure for incorporating computational fluid dynamics into sonic boom prediction // J. Aircraft, 2007, vol. 44, no. 6, pp. 1964–1971.
  11. Kanamori M., Makino Y., Ishikawa H. Extension of multipole analysis to laterally asymmetric flow field around supersonic flight vehicle // AIAA J., 2019, vol. 56, no. 1, pp. 191–204.
  12. Park M.A., Morgenstern J.M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop // J. Aircraft, 2016, vol. 53, no. 2, pp. 578–598.
  13. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows // AIAA Paper 1992-0439, 1992.
  14. Fedorov A.V., Soudakov V.G., Malmuth N.D. Theoretical modeling of two-body interaction in supersonic flow // AIAA J., 2010, vol. 48, no. 2, pp. 258–266.
  15. Zhilin Yu.L., Kovalenko V.V. On the coupling of the near and far fields in the problem of a sonic boom // Uch. Zap. TsAGI, 1998, vol. XXIX, no. 3–4, pp. 111–122. (in Russian)
  16. Keller J.B. Geometrical acoustics. I. The theory of weak shock waves // J. Appl. Phys., 1954, vol. 25, no. 8, pp. 938–947.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (256KB)
3.

Download (34KB)
4.

Download (52KB)
5.

Download (29KB)
6.

Download (102KB)
7.

Download (51KB)
8.

Download (44KB)
9.

Download (434KB)
10.

Download (61KB)

Copyright (c) 2023 А.А. Корняков, В.Г. Судаков, А.С. Щеглов