Nonlinear spherical Foucault’s pendulum
- Authors: Rozenblat G.M.1,2
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics RAS
- Moscow State Automobile and Road Technical University (MADI)
- Issue: Vol 89, No 3 (2025)
- Pages: 450-483
- Section: Articles
- URL: https://jdigitaldiagnostics.com/0032-8235/article/view/688739
- DOI: https://doi.org/10.31857/S0032823525030087
- EDN: https://elibrary.ru/JLKPWT
- ID: 688739
Cite item
Abstract
The movement of a nonlinear spherical pendulum in the noninertial Earth’s system of reference is considered. The article consists of three parts.
The first part is devoted to the classical problem of the movement of the nonlinear spherical pendulum in inertial system of reference. We get some new results concerning the estimates of the apsidal angle. We give the critical analysis of previous publications (books and articles) on this problem.
The second one is devoted to the classical problem of the Foucault pendulum. We study the problem in nonlinear case and get some new results concerning the precession of the trajectory of the nonlinear pendulum with initial conditions that were used in Foucault pendulum’s experiment.
The third one (Application) is devoted to discussing and comparing this article’s results with previous results and explanations of the Foucault pendulum’ effects.
Full Text

About the authors
G. M. Rozenblat
Ishlinsky Institute for Problems in Mechanics RAS; Moscow State Automobile and Road Technical University (MADI)
Author for correspondence.
Email: gr51@mail.ru
Russian Federation, Moscow; Moscow
References
- Krylov A.N. Two notes on mechanics // in: Sobr. Trudov. Tom 5. Moscow: Izd. AN SSSR, 1937. pp. 437–452. (in Russian)
- Leimanis E. The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. Berlin;Heidelberg;N.Y.: Springer, 1965. 337 p.
- Diaz J.B., Metcalf F.T. Upper and lower bounds for the apsidal angle in the theory of the heavy symmetrical top // Arch. Rational Mech. Anal., 1964, vol. 16, pp. 214–229.
- Lagrange J.L. Mechanique Analitique. Paris: Veuve Desaint 1788, 2 parts or Oeuvres, vols. 11, 12. Paris: Gauthier-Villars, 1889.
- Routh E.J. A Treatise on Dynamics of a Particle with Numerous Examples. Cambridge: Univ. Press, 1898. 417 p.
- Appell P. Traite de Mecanique Rationnelle.Tome premiere. Statique. Dynamique du point. Paris: Gauthier-Villars et fils, 1893. 549 p.
- Synge J.L., Griffith B.A. Principles of Mechanics. N.Y.;Toronto;London: McGraw-Hill Book Co. Inc., 1949. 530 p.
- Zhuravlev V.Ph. A controlled Foucault pendulum as a model of a class of free gyros // Mech. of Solids, vol. 32, 1997, no. 6, pp. 21–28.
- Zhuravlev V.F., Petrov A.G. The Lagrange top and the Foucault pendulum in observed variables // Dokl. Phys., 2014, vol. 59, no. 1, pp. 35–39.
- Zhuravlev V.F., Petrov A.G., Shunderuk M.M. Selected Problems of Hamiltonian Mechanics. Moscow: Lenand, 2015. 304 p.
- Foucault L. Demonstration physique du movement de la Terre au moyen du pendule // C.R. Acad. Sci. Paris, 1851, vol. 32, pp. 135–138.
- Weinstein A. The spherical pendulum and complex integration // Amer. Math. Monthly, 1942, vol. 49, pp. 521–523.
- Krylov A.N. Lectures on Approximate Calculations. Moscow: GITTL, 1954. 400 p. (in Russian)
- Puiseux V. Note sur le movement dʹun point pesant sur une sphere // J. Math. Pures Appl., 1842, vol. 7, pp. 517–520.
- Halphen G. Traite des fonctions elliptiques. T. 2, Paris: Gauthier-Villars, 1888. 128 p.
- Kohn W. Contour integration in the theory of spherical pendulum and the heavy symmetrical top // Trans. Amer. Math. Soc., 1946, vol. 59, pp. 107–131.
- Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products. Seventh Edition. Academic Press (AP), Elsevier Inc., 2007. 1171 p.
- Klein F., Sommerfeld A. Uber die Theorie des Kreisels. N.Y.: E.A. Johnson Repr. Corp., 1965. 966 p.
- Greenhill A.G. Applications of Elliptic Functions. London: 1892. 357 p.
- Golubev Yu.Ph. Fundamentals of Theoretical Mechanics. Moscow: MSU Pub., 2000. 719 p. (in Russian)
- de la Vallee Poussin Ch.-J. Lecons De Mecanique Analytique. Tome 1. 1932.
- Lidov M.L. Course of Lectures on Theoretical Mechanics. Moscow: Fizmatlit, 2001. 478 p. (in Russian)
- Chetaev N.G. Theoretical Mechanics. Moscow: Nauka. Fizmatlit, 1987. 368 p. (in Russian)
- Kilchevsky N.A. Course of Theoretical Mechanics. Vol. 1. Kinematics, Statics, Dynamics of a Point. Moscow: Nauka, 1972. 456 p. (in Russian)
- Arnold V.I. Mathematical Methods of Classical Mechanics. N.Y.: Springer, 1989.
- Geronimus Ya.L. Theoretical Mechanics (Essays on the Basic Principles).. Moscow: Nauka, 1973. 512 p. (in Russian)
- Sommerfeld A. Mechanics. Lectures on Theoretical Physics, Vol. 1. N.Y.: Acad. Press, 1952. 289 p.
- Petkevich V.V. Theoretical Mechanics. Moscow: Nauka, 1981. 496 p. (in Russian)
- Landau L.D., Lifshitz E.M. Mechanics. Butterworth–Heinemann, 1976. 170 p.
- Bolotin S.V., Karapetyan A.V., Kugushev E.I., Treschev D.V. Theoretical Mechanics. Moscow: Akademia, 2010. (in Russian)
- Barbashova T.F., Kugushev E.I., Popova T.V. Kinematica. Kinematics. General Theorems of Dynamics. Moscow: MCNMO, 2015. 344 p.
- Lyapunov A.M. Lectures on Theoretical Mechanics. Kiev: Naukova Dumka, 1982. 632 p.
- Klimov D.M. On the motion of Foucault pendulum // Mech. of Solids, 2015, vol. 50, pp. 317.
- Arnold V.I., Kozlov V.V., Neishtadt A.I. Mathematical Aspects of Classical and Celestial Mechanics. Springer, 2010. 266 p.
- Pars L.A. A Treatise on Analytical Dynamics. London: Heineman, 1965. 641 p.
- Zhukovsky N.E. Theoretical Mechanics. Moscow;Leningrad: GITTL, 1952. 811 p.
- Rozenblat G.M. Estimates of the average angular velocity of the precession of Lagrange’s top // Dokl. Phys., 2019, vol. 64, no. 3, pp. 114–119.
- Zhuravlev V.Ph. On the question of estimates of the Magnus effect// Dokl. AN SSSR, 1976, vol. 226, no 3, pp. 541–543. (in Russian)
- Zhuralev V.Ph., Rozenblat G.M. Paradoxes, Counterexamples and Mistakes in Mechanics. Moscow: Lenand, 2017. 240 p. (in Russian)
- Rozenblat G.M. On precession of Lagrange s top // PMM, 2024; vol. 88, iss. 1, pp. 34–52.
- Markeev A.P. Theoretical Mechanics. Moscow;Izhevsk: NIC R&C Dyn., 712 p.
- Lojcjansky L.G., Lurje A.I. Course of Theoretical Mechanics: in 2 Vols. Vol. 2. Dynamics. Moscow: Nauka, 1983.
- Beryezkin E.N. The Theoretical Mechanics Course. Moscow: MSU Pub., 1974. 646 p. (in Russian)
- Bukhgolts N.N. Basic Course of Theoretical Mechanics. Vol. 1: Kinematics, Statics, Dynamics of a Material Point. Moscow: Nauka, 1965. 467 p.
- Markeev A.P. On nondegeneracy of the Hamiltonian function for a spherical pendulum // Dokl. Phys., 2010, vol. 55, pp. 33–38. https://doi.org/10.1134/S1028335810010076
- Smirnov A.S., Smolnikov B.A. Mechanics of a Spherical Pendulum. St Petersburg: Politech Press, 2019. 266 p.
- Borisov A.V., Mamaev I.S. Rigid Body Dynamics. Studies in Mathematical Physics, Vol. 52. Higher Education Press, 2019. 520 p.
Supplementary files
