Problem of Three-Point Bending of an Elastic Beam from Porous Metal

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using numerical methods, we construct a solution to a physically and geometrically nonlinear problem of three-point bending of an elastic beam, made of porous metal, with rectangular cross-section. Unlike the classical version of the problem for a homogeneous beam, the heterogeneity over the cross-section due to material compaction because of the collapse of pores, which occurs in the compression zone at sufficiently large deflections, is taken into account. To describe the elastic state of a porous metal, the stress – strain diagram of a bimodular medium is used. The results of computations of strong bending of a beam, made of the low-porosity aluminum foam, are presented. These results demonstrate the difference between the obtained solution and similar solutions for beams, made of homogeneous porous and compacted material.

Негізгі сөздер

Толық мәтін

Рұқсат жабық

Авторлар туралы

B. Annin

Lavrentyev Institute of Hydrodynamics, SB RAS

Хат алмасуға жауапты Автор.
Email: bdannin@mail.ru
Ресей, Novosibirsk

V. Sadovsky

Institute of Computational Modelling, SB RAS

Email: sadov@icm.krasn.ru
Ресей, Krasnoyarsk

O. Sadovskaya

Institute of Computational Modelling, SB RAS

Email: o_sadov@icm.krasn.ru
Ресей, Krasnoyarsk

Әдебиет тізімі

  1. Gibson L.J. Mechanical behavior of metallic foams // Annu. Rev. Mater. Sci., 2000, vol. 30, no. 1, pp. 191–227.
  2. Banhart J. Manufacturing routes for metallic foams // JOM, 2000, vol. 52, no. 12, pp. 22–27.
  3. Ashby M.F. Plastic deformation of cellular materials // Encyclopedia of Materials: Science and Technology, pp. 7068–7071. Oxford: Pergamon, 2001.
  4. Leushin I.O., Grachev A.N., Nazarov V.N., Gorokhov P.A. Aluminum foam is a promising material for the production of cast products for responsible purposes // The Theory&Proc. Engng. of Metall. Prod., 2020, vol. 35, no. 4, pp. 35–38. (in Russian)
  5. Prokhorchuk E.A., Leonov A.A., Vlasova K.A. et al. Prospects for the use of hot isostatic pressing in cast aluminum alloys (review) // Proc. VIAM, 2021, vol. 106, no. 12, pp. 21–30. (in Russian)
  6. Schaedler T.A., Jacobsen A. J., Torrents A. et al. Ultralight metallic microlattices // Science, 2011, vol. 334, no. 6058, pp. 962–965.
  7. Annin B.D. Mechanics of Deformable Solids: Sel. works. Novosibirsk: SB RAS, 2022. 288 p. (in Russian)
  8. Garcia-Avila M., Portanova M., Rabiei A. Ballistic performance of composite metal foams // Compos. Struct., 2015, vol. 125, pp. 202–211.
  9. Czekanski A., Elbestawi M.A., Meguid S.A. On the FE modeling of closed-cell aluminum foam // Int. J. Mech. Mater. Des., 2005, vol. 2, no. 1–2, pp. 23–34.
  10. Völlmecke C., Todt M., Yiatros S. Buckling and postbuckling of architectured materials: A review of methods for lattice structures and metal foams // Compos. Adv. Mater., 2021, vol. 30, pp. 1–12.
  11. Sadovskii V.M., Sadovskaya O.V. Analyzing the deformation of a porous medium with account for the collapse of pores // J. Appl. Mech. Tech. Phys., 2016, vol. 57, no. 5, pp. 808–818.
  12. Sadovskii V.M., Sadovskaya O.V., Luk’yanov A.A. Radial expansion of a cylindrical or spherical cavity in an infinite porous medium // J. Appl. Mech. Tech. Phys., 2014, vol. 55, no. 4, pp. 689–700.
  13. Rabotnov Yu.N. Mechanics of Deformable Solids. Moscow: Nauka, 1979. 744 p. (in Russian)
  14. Sadovskaya O., Sadovskii V. Mathematical Modeling in Mechanics of Granular Materials. Ser.: Advanced Structured Materials, vol. 21. Heidelberg: Springer, 2012. 390 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Beam loading schemes.

Жүктеу (53KB)
3. Fig. 2. Rheological scheme (a) and diagram (b) of low porous metal.

Жүктеу (93KB)
4. Fig. 3. Schematic of cylindrical bending.

Жүктеу (95KB)
5. Fig. 4. Dependence of the dimensionless bending stiffness on the parameter for (curves 1-5, respectively).

Жүктеу (104KB)
6. Fig. 5. Dependence of dimensionless thickness on the parameter for (curves 1-5, respectively).

Жүктеу (112KB)
7. Fig. 6. Calculated beam deflections: 1 - aluminum; 2 - porous aluminum; 3 - porous aluminum, without considering the seal.

Жүктеу (94KB)
8. Fig. 7. Calculated beam deflections: 1 - aluminum; 2 - porous aluminum; 3 - porous aluminum, without considering the seal.

Жүктеу (97KB)

© Russian Academy of Sciences, 2024