Optimal motion of a body controlled by an internal mass in the resistive environment

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Translational movement of a body controlled by means of periodical motions of an internal mass within the environment with the quadratic resistance is considered. The average speed of motion depending on the constraints imposed is evaluated, and the conditions are found that correspond to the maximum average speed.

Толық мәтін

Рұқсат жабық

Авторлар туралы

T. Glazkov

Ishlinsky Institute for Problems in Mechanics RAS

Хат алмасуға жауапты Автор.
Email: t.glazkov@bk.ru
Ресей, Moscow

F. Chernousko

Ishlinsky Institute for Problems in Mechanics RAS

Email: chern@ipmnet.ru
Ресей, Moscow

Әдебиет тізімі

  1. Nagaev R.F., Tamm E.A. Vibrational displacement in a medium with quadratic resistance to motion // Mashinoved., 1980, no. 4, pp. 3–8. (in Russian)
  2. Gerasimov S.A. On vibrational flight of a symmetric system // Izv. vuzov. Mashinostr., 2005, no. 8, pp. 3–7. (in Russian)
  3. Yegorov A.G., Zakharova O.S. Optimal quasistationary motion of a vibro-robot in a viscous medium // Izv. vuzov. Matematika, 2012, no. 2, pp. 57–64. (in Russian)
  4. Liu Y., Wiercigroch M., Pavlovskaya E., Yu. Y. Modeling of a vibro-impact capsule system // Int. J. Mech. Sci., 2013, vol. 66, pp. 2–11.
  5. Liu Y., Pavlovskaya E., Hendry D., Wiercigroch M. Optimization of the vibroimpact capsule system // J. Mech. Engng., 2016, vol. 62, pp. 430–439.
  6. Fang H.B., Xu J. Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium // J. Sound&Vibr., 2011, vol. 330, pp. 4002–4018.
  7. Xu J., Fang H. Improving performance: recent progress on vibration-driven locomotion systems // Nonlin. Dyn., 2019, vol. 98, pp. 2651–2669.
  8. Tahmasian S. Dynamic analysis and optimal control of a drag-based vibratory systems using averaging // Nonlin. Dyn., 2021, vol. 104, pp. 2201–2217.
  9. Chernousko F.L. The optimal periodic motions of a two-mass system in a resistant medium // JAMM, 2008, vol. 72, iss. 2, pp. 116–125.
  10. Chernousko F.L., Bolotnik N.N. Dynamics of Mobile Systems with Controlled Configuration. Moscow: Fizmatlit, 2022. 464 p. (in Russian)
  11. Chernousko F.L. Optimization of motion of a body with an internal mass under quadratic resistance // Dokl. Phys., 2023, vol. 513, pp. 80–86. (in Russian)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Mechanical system.

Жүктеу (94KB)
3. Fig. 2. Movement of the internal mass.

Жүктеу (61KB)
4. Fig. 3. Hull speed.

Жүктеу (43KB)
5. Fig. 4. Dependence of Φ on the parameter σ for k=3.5.

Жүктеу (55KB)
6. Fig. 5. Dependence of Φ on the parameter σ for k=10.

Жүктеу (56KB)
7. Fig. 6. Dependence of Φ on the parameter σ at μ1=0.4.

Жүктеу (59KB)
8. Fig. 7. Dependence of the normalized maximum speed v on the parameter σ for μ ≪1.

Жүктеу (47KB)
9. Fig. 8. Dependence of the value of Q on the parameter σ.

Жүктеу (58KB)

© Russian Academy of Sciences, 2024