Optimal motion of a body controlled by an internal mass in the resistive environment

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Translational movement of a body controlled by means of periodical motions of an internal mass within the environment with the quadratic resistance is considered. The average speed of motion depending on the constraints imposed is evaluated, and the conditions are found that correspond to the maximum average speed.

全文:

受限制的访问

作者简介

T. Glazkov

Ishlinsky Institute for Problems in Mechanics RAS

编辑信件的主要联系方式.
Email: t.glazkov@bk.ru
俄罗斯联邦, Moscow

F. Chernousko

Ishlinsky Institute for Problems in Mechanics RAS

Email: chern@ipmnet.ru
俄罗斯联邦, Moscow

参考

  1. Nagaev R.F., Tamm E.A. Vibrational displacement in a medium with quadratic resistance to motion // Mashinoved., 1980, no. 4, pp. 3–8. (in Russian)
  2. Gerasimov S.A. On vibrational flight of a symmetric system // Izv. vuzov. Mashinostr., 2005, no. 8, pp. 3–7. (in Russian)
  3. Yegorov A.G., Zakharova O.S. Optimal quasistationary motion of a vibro-robot in a viscous medium // Izv. vuzov. Matematika, 2012, no. 2, pp. 57–64. (in Russian)
  4. Liu Y., Wiercigroch M., Pavlovskaya E., Yu. Y. Modeling of a vibro-impact capsule system // Int. J. Mech. Sci., 2013, vol. 66, pp. 2–11.
  5. Liu Y., Pavlovskaya E., Hendry D., Wiercigroch M. Optimization of the vibroimpact capsule system // J. Mech. Engng., 2016, vol. 62, pp. 430–439.
  6. Fang H.B., Xu J. Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium // J. Sound&Vibr., 2011, vol. 330, pp. 4002–4018.
  7. Xu J., Fang H. Improving performance: recent progress on vibration-driven locomotion systems // Nonlin. Dyn., 2019, vol. 98, pp. 2651–2669.
  8. Tahmasian S. Dynamic analysis and optimal control of a drag-based vibratory systems using averaging // Nonlin. Dyn., 2021, vol. 104, pp. 2201–2217.
  9. Chernousko F.L. The optimal periodic motions of a two-mass system in a resistant medium // JAMM, 2008, vol. 72, iss. 2, pp. 116–125.
  10. Chernousko F.L., Bolotnik N.N. Dynamics of Mobile Systems with Controlled Configuration. Moscow: Fizmatlit, 2022. 464 p. (in Russian)
  11. Chernousko F.L. Optimization of motion of a body with an internal mass under quadratic resistance // Dokl. Phys., 2023, vol. 513, pp. 80–86. (in Russian)

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Mechanical system.

下载 (94KB)
3. Fig. 2. Movement of the internal mass.

下载 (61KB)
4. Fig. 3. Hull speed.

下载 (43KB)
5. Fig. 4. Dependence of Φ on the parameter σ for k=3.5.

下载 (55KB)
6. Fig. 5. Dependence of Φ on the parameter σ for k=10.

下载 (56KB)
7. Fig. 6. Dependence of Φ on the parameter σ at μ1=0.4.

下载 (59KB)
8. Fig. 7. Dependence of the normalized maximum speed v on the parameter σ for μ ≪1.

下载 (47KB)
9. Fig. 8. Dependence of the value of Q on the parameter σ.

下载 (58KB)

版权所有 © Russian Academy of Sciences, 2024