Modeling of ONERA experiment with subsonic premixed turbulent flame in duct with backward step

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The premixed subsonic turbulent combustion of methane-air mixture in channel with backward step is considered. (Magre P. et al., ONERA, 1975–1989). These experiments represent basic physical mechanisms, which are common for combustion processes in gas turbine units. The brief review of previous works on numerical modeling of these experiments is presented. The new results of numerical investigation of stable flame regime for this experimental setup are presented. The choice of turbulence model and its influence on flow structure are described. Various approaches for turbulent combustion description, based on PaSR (Partially Stirred Reactor) are compared with quasi-laminar approach. The recommendations are given for choice between global and multistage chemical kinetics in combination with different models for turbulence combustion interaction. The influence of variable turbulent Prandtl and Schmidt number model on this flow representation. The ideas for further research are formulated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Vlasenko

Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: vlasenko.vv@yandex.ru
Ресей, Zhukovsky; Dolgoprudny

R. Balabanov

Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology

Email: vlasenko.vv@yandex.ru
Ресей, Zhukovsky; Dolgoprudny

Wenchao Liu

Moscow Institute of Physics and Technology

Email: vlasenko.vv@yandex.ru
Ресей, Dolgoprudny

S. Molev

Central Aerohydrodynamic Institute (TsAGI)

Email: vlasenko.vv@yandex.ru
Ресей, Zhukovsky

V. Sabelnikov

Central Aerohydrodynamic Institute (TsAGI)

Email: vlasenko.vv@yandex.ru
Ресей, Zhukovsky

Әдебиет тізімі

  1. Vlasenko V.V., Balabanov R.A., Liu W., Molev S.S., Sabelnikov V.A. Models for description of subsonic flows with premixed turbulent combustion in channels // JAMM, 2024, vol. 88, no. 6, pp. 828–836.
  2. Correa S. Non-equilibrium step-stabilized combustion of hydrogen in supersonic air // 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conf.: Massachusetts, USA. AIAA paper. 1988, vol. 88, 3223. 9 p.
  3. Ueda T., Mizomoto M. Effect of slot gas injection to the flow field and coherent structure characteristics of a backstep flow // Int. J. of Heat Mass Transfer, 2001, vol. 44, no. 14, pp. 2711–2726.
  4. Magre P., Moreau P., Collin G., Borghi R., Péalat M. Further studies by CARS of premixed turbulent combustion in a high velocity flow // Combust.&Flame, 1988, vol. 71, no. 2, pp. 147–168.
  5. Petrova N. Turbulence-chemistry interaction models for numerical simulation of aeronautical propulsion systems / Ph.D. Thes. Paris: Ecole Polytechnique, 2015. 316 p. https://hal.archives-ouvertes.fr/tel-01113856/
  6. Poinsot T., Veynante D. Theoretical and Numerical Combustion. Flourtown: RT Edwards Inc., 2005. 522 p.
  7. Peters N. Turbulent Combustion. Cambridge: Univ. Press, 2000. 304 p.
  8. Lipatnikov A. Fundamentals of Premixed Turbulent Combustion. Boca Raton: CRC Press, 2012. 548 p.
  9. Dupoirieux F., Vincent A., Bertier N., Banh A. Numerical simulation of a premixed CH4–air burner for comparison of RANS and LES methodologies // NEPCAP, 2016, October 2016, Sochi, Russia. hal-01400311.
  10. Lebedev A.B, Toktaliev P.D., Yakubovsky K.Ya. Computational research of turbulent homogenous combustion of methan-air mixture with RANS and LES methods in low emission combustion chamber // Combust.&Explos., 2017, vol. 10, no. 4, pp. 8–16. (in Russian)
  11. Toktaliev P.D., Yakubovsky K.Ya., Lebedev A.B. Numerical research of unsteady homogenous combustion regimes of methane-air mixture in low emission combustion chamber // Combust.&Explos., 2017, vol. 11, no. 1, pp. 35–46. (in Russian)
  12. Sainte-Rose B. Simulations numeriques d’ecoulements reactifs massivement d’ecolles par une approche hybride RANS/LES / PhD Thes. Paris: Ecole Centrale, 2010. 186 p.
  13. Colin O., Ducros F., Veynante D., Poinsot T. A thickened flame model for large eddy simulations of turbulent premixed combustion // Phys. of Fluids, 2000, vol. 12, pp. 1843–1863.
  14. Legiert J.P., Poinsott T. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion // Studying Turbulence Using Numer. Simul. Databases, 2000, vol. VIII, pp. 157–168.
  15. Refloch A., Courbet B., Murrone A., Villedieu P., Laurent C., Gilbank P., Troyes J., Tessé L., Chaineray G., Dargaud J.B., Quémerais E., Vuillo F. CEDRE Software https://web.archive.org/web/20200216012255/http://www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL2-11.pdf
  16. Sabelnikov V., Fureby C. LES combustion modeling for high Re flames using a multi-phase analogy // Combust.&Flame, 2013, vol. 160, no. 1, pp. 83–96.
  17. Berglund M., Fedina E., Fureby C., Tegnér J., Sabel’nikov V. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet // AIAA J., 2010, vol. 48, no. 3, pp. 540–550.
  18. Petrova N., Sabelnikov V., Bertier N. Numerical simulation of a backward-facing step combustor using RANS/Extended Partially Stirred Reactor model // EUCASS-2015, 17 p.
  19. Laboratory of physical and numerical modeling of flows with turbulent combustion. http://tsagi.ru/institute/lab220/
  20. Troshin A.I., Molev S.S., Vlasenko V.V., Mikhailov S.V., Bakhne S., Matyash S.V. Modeling of turbulent flows on the basis of ides method in zflare program // Comput. Cont. Mech., 2023, vol. 16, no. 2, pp. 203–218. (in Russian)
  21. Moule Y., Sabelnikov V., Mura A. Highly resolved numerical simulation of combustion in supersonic hydrogen–air coflowing jets // Combust.&Flame, 2014, vol. 161, no. 10, pp. 2647–2668.
  22. Vlasenko V.V., Nozdrachev A.Yu., Sabelnikov V.A., Shirayeva A.A. Analysis of stabilization mechanisms of turbulent combustion on the data of calculations with application of partially stirred reactor // Combust.&Explos., 2019, vol. 12, no. 1, pp. 43–57. (in Russian)
  23. Vlasenko V.V., Kazhan E.V., Matyash E.S., Mikhailov S.V., Troshin A.I. Numerical realization of implicit scheme and various turbulence models in computational module ZEUS // Tr. TSAGI, 2015, no. 2735, pp. 5–49. (in Russian)
  24. Balabanov R.A., Vlasenko V.V., Shirayeva A.A. Validation experience of turbulent combustion models of PaSR class and plans for these models development for gas turbine units combustion chambers // Compendium: Unsteady Processes: Plasma, Combustion, Atmosphera. NEPCAP–2022 / ed. by Frolov S.M., Lanshin A.I. Moscow: Torus Press, 2022. pp. 94–99. (in Russian)
  25. Liu W. Influence of chemical kinetics models on results of numerical modeling of turbulent flows with combustion / PhD Thes. Moscow: MIPT; Dorodnitsyn Comput. Centre of the RAS, 2023. 154 p. (in Russian) https://www.frccsc.ru/sites/default/files/docs/ds/002-073-03/008-lu/24-1-224-02_008_Lu_main.pdf?738
  26. ANSYS CFD. https://www.ansys.com/products/fluids#tab1-2
  27. Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model // Turbulence, Heat Mass Transfer, 2003, vol. 4, no. 1, pp. 625–632.
  28. Menter F.R. Two-equation eddy-viscosity turbulence models for engineering applications // AIAA J., 1994, vol. 32, no. 8, pp. 1598–1605.
  29. Basevich V.Ya., Belyaev A.A., Frolov S.M. Global kinetic mechanisms for calculation of turbulent reacting flows. pp. 1. Basic chemical process of heat release // Chem. Phys., 1998, vol. 7, no. 9, pp. 112–128. (in Russian)
  30. Franzelli B., Riber E., Gicquel L.Y., Poinsot Т. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame // Combust.&Flame, 2012, vol. 159, no. 2, pp. 621–637.
  31. Smooke M.D. Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames: A Topical Volume / Lecture Notes in Physics. Vol. 384. Berlin: Springer, 1991. 251 p.
  32. Bosnyakov S., Kursakov I., Lysenkov A., Matyash S., Mikhailov S., Vlasenko V., Quest J. Computational tools for supporting the testing of civil aircraft configurations in wind tunnels // Progr. in Aerosp. Sci., 2008, vol. 44, pp. 67–120.
  33. Shiryaeva A.A. Modeling of high speed flows with mixed regimes of turbulent combustion on the basis of three dimensional Reynolds equations / PhD Thes. Moscow: MIPT, 2019. 217 p. (in Russian)
  34. Zeldowitsch J.B., Frank-Kamenetzki D.A. A theory of thermal propagation of flame // in: Dynamics of Curved Fronts. Acad. Press, 1988. pp. 131–140.
  35. Berglund M., Fedina E., Fureby C., Tegnér J., Sabel’nikov V. Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet // AIAA J., 2010, vol. 48, no. 3, pp. 540–550.
  36. Magnussen B.F. The eddy dissipation concept: A bridge between science and technology // ECCOMAS Thematic Confer. on Comput. Combust. Lisbon, 2005.
  37. Chomiak J., Karlsson A. Flame liftoff in diesel sprays // Int. Symp. on Combustion, 1996, vol. 26, no. 2, pp. 2557–2564.
  38. Wilcox D.C. Turbulence modeling for CFD. 3rd edition. La Cañada: DCW Industries, 2006. 544 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. ONERA experimental setup scheme

Жүктеу (147KB)
3. Fig. 2. Time-averaged temperature fields obtained by TsAGI in 2D URANS combustion simulations using the q–ω turbulence model in the quasi-laminar formulation (without TCI) and with other different TCI models. The isoline T = 1500 K is shown

Жүктеу (353KB)
4. Fig. 3. Dependence of the combustion front slope on the velocity of the incoming fresh mixture

Жүктеу (123KB)
5. Fig. 4. Geometry of the computational domain (a) and the computational grid in the vicinity of the step (b)

Жүктеу (349KB)
6. Fig. 5. Flow parameter profiles at the inlet to the computational domain: a) longitudinal velocity; b) turbulence intensity; c) ratio

Жүктеу (125KB)
7. Fig. 6. Temperature fields in simulations without TCI: a) SST model, Frolov4 kinetics; b) Baseline k–ω model, Frolov4 kinetics

Жүктеу (180KB)
8. Fig. 7. Temperature profiles in three cross-sections in calculations based on the PaSR model a) calculations with different values of the constant Cτ; b) comparison with TsAGI calculations based on the q–ω turbulence model according to the EPaSR model

Жүктеу (493KB)
9. Fig. 8. Heat release rate fields obtained in calculations with the PaSR model using different kinetic schemes: a) BFER2; b) Frolov4; c) Smooke25

Жүктеу (328KB)
10. Fig. 9. Comparison of three mechanisms of chemical kinetics: a) dependence of the laminar flame velocity on the excess fuel coefficient and comparison with the experiment [96]; b) dependence of temperature on time during combustion in a reactor p = const; c) dependence of the rate of water vapor formation on temperature, corresponding to graph (a) at φ = 1.0; d) similar dependences corresponding to (b)

Жүктеу (385KB)
11. Fig. 10. Temperature fields obtained in calculations with Smooke25 kinetics: a) Fluent, without TCI; b) zFlare, taking TCI into account using the EPaSR model

Жүктеу (182KB)
12. Fig. 11. TsAGI grid for simulating the ONERA experiment

Жүктеу (336KB)
13. Fig. 12. Examples of unsuccessful average temperature fields obtained in TsAGI calculations with the EPaSR–PrOm model at the stage of adjusting the model parameters: a) flame breakthrough at TW = min(800,T1), ; b) too narrow flame front at TW = min(800,T1)

Жүктеу (193KB)
14. Fig. 13. Average temperature distribution obtained in zFlare, a) without TCI, k–ω Baseline; b) EPaSR, k–ω Baseline; c) two-channel EPaSR–PrOm, k–ω Baseline

Жүктеу (261KB)
15. Fig. 14. Profiles of the average temperature T, average longitudinal velocity U and average transverse velocity V. Columns correspond to sections x = 0.1, 0.25, 0.34, 046 and 0.71 m from the channel step

Жүктеу (615KB)
16. Fig. 15. Field of the volume fraction of fine structures for the ONERA experiment with subsonic combustion. a) EPaSR, k–ω Baseline; b) two-sided EPaSR–PrOm, k–ω Baseline

Жүктеу (215KB)
17. Fig. 16. Fields of variable turbulent Prandtl and Schmidt numbers obtained by the EPaSR–PrOm model in the ONERA experiment with subsonic combustion

Жүктеу (293KB)

© Russian Academy of Sciences, 2025