On the stability of linear systems with a quadratic integral

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of stability of non-degenerate linear systems admitting a first integral in the form of a non-degenerate quadratic form is considered. New algebraic criteria for stability, as well as complete instability of such systems, have been established in the form of equality to zero of traces of products of matrices, which include an additional symmetric matrix. These conditions are closely related to the symplectic geometry of the phase space, which is determined by the matrix of the original linear system and the symmetric matrix defining the first integral. General results are applied to finding conditions for complete instability of linear gyroscopic systems.

Texto integral

Acesso é fechado

Sobre autores

V. Kozlov

Steklov Mathematical Institute RAS

Autor responsável pela correspondência
Email: vvkozlov@presidium.ras.ru
Rússia, Moscow

Bibliografia

  1. Kozlov V.V. Linear systems with a quadratic integral // JAMM, 1992, vol. 56, iss. 6, pp. 803–809. doi: 10.1016/0021-8928(92)90114-N
  2. Kozlov V.V. Linear hamiltonian systems: quadratic integrals, singular subspaces and stability // R.&C. Dyn., 2018, Vol. 23, no 1, pp. 26–46.
  3. Kozlov V.V., Karapetyan A.A. On the stability degree // Differ. Eqns., 2005, vol. 41, no. 2, pp. 195–201.
  4. John F. A note on the maximum principle for elliptic differential equations // Bull. Amer. Math. Soc., 1938, vol. 44, pp. 268–271.
  5. Dines L.L. On linear combinations of quadratic forms // Bull. Amer. Math. Soc., 1943, vol. 49, pp. 388–393.
  6. Uhlig F. A Reccurring theorem about pairs of quadratic forms and extensions: a survey // Linear Algebra and Its Appl., 1979, vol. 25, pp. 219–237.
  7. Gantmakher F.R. Matrix Theory. Moscow: Fizmatlit, 2004. 560 p. (in Russian)
  8. Kirillov O.N. Nonconservative Stability Problems of Modern Physics. Berlin: De Gruyter, 2013.
  9. Mailybaev A.A., Seyranyan A.P. Multiparameter Stability Problems. Theory and Applications in Mechanics. Moscow: Fizmatlit, 2009. 399 p. (in Russian)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1

Baixar (88KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024