Критерии разрушения волокон и матрицы при статическом нагружении однонаправленных полимерных композитов
- Авторы: Олейников А.И.1,2
-
Учреждения:
- Центральный аэрогидродинамический институт им. Н. Е. Жуковского (ЦАГИ)
- Московский физико-технический институт
- Выпуск: Том 88, № 2 (2024)
- Страницы: 255-270
- Раздел: Статьи
- URL: https://jdigitaldiagnostics.com/0032-8235/article/view/675067
- DOI: https://doi.org/10.31857/S0032823524020078
- EDN: https://elibrary.ru/XUILPU
- ID: 675067
Цитировать
Аннотация
При анализе прочности конструкций из слоистых волокнистых полимерных композиционных материалов используются критерии разрушения монослоя – однонаправленно армированного композита. Формулируется критерий прочности по условиям разрушения матрицы, соответствующий коническим предельным поверхностям и наименьшим разрушающим нагрузкам. Приводится критерий прочности по условию разрушения волокон, не допускающего парадокса увеличения прочности в области перехода от разрушения волокон к разрушению матрицы. Проводится экспериментальная проверка критериев при объемном, плоском и одномерном нагружениях. Показывается их лучшее соответствие опытным данным и отмечаются их преимущества. Небольшое число легко определяемых параметров данных критериев способствует их надежности и устойчивости в расчетах на прочность элементов композитных конструкций.
Ключевые слова
Полный текст

Об авторах
А. И. Олейников
Центральный аэрогидродинамический институт им. Н. Е. Жуковского (ЦАГИ); Московский физико-технический институт
Автор, ответственный за переписку.
Email: alexander.oleinikov@tsagi.ru
Россия, Жуковский; Долгопрудный
Список литературы
- Hashin Z., Rotem A. A. Fatigue failure criterion for fiber reinforced materials // J. Compos. Mater. 1973. V. 7. P. 448–464.
- Rabotnov Yu.N., Polilov A. N. Strength criteria for fibre-reinforced plastics // Fracture. 1977. Vol. 3, Pp. 1059–1065.
- Полилов А. Н. Критерии разрушения поверхности раздела в однонаправленных композитах // Изв. АН СССР. МТТ. 1978. № 2. С. 115–119.
- Hashin Z. Failure criteria for unidirectional fiber composites // J. Appl. Mech. 1980. V. 47. P. 329–334.
- Puck A. Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis. München; Wien: Hanser, 1996. 212 s.
- Puck A., Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models // Compos. Sci.&Technol. 1998. V. 58. P. 1045–1067.
- Puck A., Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models // Compos. Sci.&Technol. 2002. V. 62. P. 1633–1662.
- Soden P.D., Hinton M. J., Kaddour A. S. A comparison of the predictive capabilities of current failure theories for composite laminates // Compos. Sci.&Technol. 1998. V. 58. P. 1225–1254.
- Kaddour A.S., Hinton, M.J., Soden P. D. A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions // Compos. Sci.&Technol. 2004. V. 64. P. 449–476.
- Полилов А.Н., Татусь Н. А. Экспериментальное обоснование критериев прочности волокнистых композитов, проявляющих направленный характер разрушения // Вестн. ПНИПУ. Механика. 2012. № 2. С. 140–166.
- Олейников А. И. Варианты критерия прочности однонаправленных полимерных композитов по условию разрушения связующего при наличии сжатия перпендикулярно волокнам // ПММ. 2022. T. 86. № 2. C. 223–234.
- Thomson D.M., Cui H., Erice B., Hoffmann J., Wiegand J., Petrinic N. Experimental and numerical study of strain-rate effects on the IFF fracture angle using a new efficient implementation of Puck’s criterion // Compos. Struct. 2017. V. 181. P. 325–335.
- Gong Y., Huang T., Zhang X., Jia P., Suo Y., Zhao S. A reliable fracture angle determination algorithm for extended Puck’s 3D inter-fiber failure criterion for unidirectional composites // Mater. 2021. V. 14/6325. P. 1–14.
- Олейников А. И. Критерий прочности элементов моделей ЛА из однонаправленных композитов // Матер. XXXIII научно-технич. Конф. по аэродин. ЦАГИ. 2022. С. 84–85.
- Cuntze R., Deska R., Szelinski B., et al. Neue Bruchkriterien und Festigkeitsnachweise für unidirektionalen Faserkunststoffverbundunter mehrachsiger Beanspruchung – Modellbildung und Experimente. Düsseldorf: VDI Verlag, 1997. 262 s.
- Kaiser C., Kuhnel E., Obst A. Failure criteria for FRP and CMC: theory, experiments and guidelines // Europ. Conf. on Spacecr. Struct. Mater. Mech. Testing. Noordwijk, ESA, 2005. 12 p.
- Dávila C.G., Camanho P. P. Failure Criteria for FRP Laminates in Plane Stress. Hampton: NASA Langley Res. Center. NASA/TM-2003–212663, 2003. 28 p.
- Полилов А. Н. Определение прочности при изгибе криволинейных образцов // Машиновед. 1984. № 1. С. 54–60.
- Олейников А. И. Оценка статической прочности слоистых композитов // Уч. зап. ЦАГИ. 2019. Т. L. № 4. С. 53–66.
- Kawai M., Itoh N. A failure-mode based anisomorphic constant life diagram for a unidirectional carbon/epoxy laminate under off-axis fatigue loading at room temperature // J. Compos. Mater. 2014. V. 48(5). P. 571–592.
- Shin E.S., Pae K. D. Effects of hydrostatic pressure on the torsional shear behaviour of graphite/epoxy composites // J. Compos. Mater. 1992. V. 26. P. 462–485.
- Shin E.S., Pae K. D. Effects of hydrostatic pressure on in-plane shear properties of graphite/epoxy composites // J. Compos. Mater. 1992. V. 26. P. 828–868.
- Hinton M.J., Kaddour A. S. Benchmark data triaxial test results for fibre-reinforced composites: the second world-wide failure exercise // J. Compos. Mater. 2012. V. 47. P. 633–678.
- Cuntze R. The predictive capability of failure mode concept-based strength conditions for laminates composed of unidirectional laminae under static triaxial stress states // J. Compos. Mater. 2012. V. 46. P. 2563–2594.
- Deuschle H. M., Puck A. Application of the Puck failure theory for fibre reinforced composites under 3D-Stress: comparison with experimental results // J. Compos. Mater. 2013. V. 47. P. 827–846.
- Carrere N., Laurin F., Maire J-F. Micromechanical based hybrid mesoscopic 3D approach for non-linear progressive failure analysis of composite structures // J. Compos. Mater. 2012. V. 46. P. 2389–2415.
- Pinho S.T., Darvizeh R., Robinson P., et al. Material and structural response of polymer-matrix fibre-reinforced composites // J. Compos. Mater. 2012. V. 46. P. 2313–2341.
- Hütter U., Schelling H., Krauss H. An experimental study to determine the failure envelope of composite materials with tubular specimens under combined loads and comparison between several classical criteria // in: Failure Modes of Composite Materials with Organic Matrices and Other Consequences on Design. Munich: NATO. AGRAD. Conf. Proc. № 163. 1974. P. 13–19.
- Soden P.D., Hinton M. J., Kaddour A. S. Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: failure exercise benchmark data // Compos. Sci.&Technol. 2002. V. 62. P. 1489–1514.
- Tsai S.W., Wu E. M. A general theory of strength for anisotropic materials // J. Compos. Mater. 1971. V. 5. P. 58–80.
- Liu K.-S., Tsai S. W. A progressive quadratic failure criterion for a laminate // Compos. Sci. Technol. 1998. V. 58. P. 1023–1032.
- Rotem A. The Rotem failure criterion: theory and practice // Compos. Sci. Technol. 2002. V. 62. P. 1663–1671.
- Davila C.G, Camanho P. P., Rose C. A. Failure criteria for FRP laminates // J. Compos. Mater. 2005. V. 39. P. 323–345.
Дополнительные файлы
