High-performance numerical method for searching the effective thermal conductivity of media with inhomogeneous macrostructure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

When solving engineering problems, it is often necessary to know the physical properties of porous media with complex internal structure. In this paper we propose a technique for numerical modeling of heat conduction of this kind of bodies including non-conducting circular inclusions. This technique allows to calculate temperature fields and heat fluxes, as well as other parameters necessary for applications. One of such parameters demanded by practice is the effective thermal conductivity, which depends on the volume content of thermally insulated pores and their mutual location. The basis of the above studies is the indirect boundary element method proposed in this paper, based on pre-calculated analytical solutions, on which the decomposition is performed. In order to verify the developed methods, a comparison with the results of other authors is given in the paper. It showed a fairly good agreement.

全文:

受限制的访问

作者简介

A. Zvyagin

M.V. Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: zvsasha@rambler.ru
俄罗斯联邦, Moscow

A. Udalov

M.V. Lomonosov Moscow State University; Scientific Research Institute for System Analysis RAS

Email: udalets@inbox.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. Braginsky L., Shklover V., Witz G., Bossmann H.-P. Thermal conductivity of porous structures // Phys. Rev. B, 2007, vol. 75(9).
  2. Smith D., Alzina A., Bourret J. et al. Thermal conductivity of porous materials // J. of Mater. Res., 2013, vol. 28(17).
  3. Kachanov M., Tsukrov I., Shafiro B. Effective moduli of solids with cavities of various shapes // Appl. Mech. Rev., 1994, vol. 47.
  4. Kiradjiev K.B., Halvorsen S.A., Van Gorder R.A., Howison S.D. Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids // Int. J. of Thermal Sci., 2019, vol. 145.
  5. Klemens P.G. Thermal conductivity of inhomogeneous materials // Int. J. Thermophys., 1989, vol. 10, pp. 1213–1219.
  6. Sevostianov I., Kachanov M. Elastic and conductive properties of plasma-sprayed ceramic coatings in relation to their microstructure: An overview // J. of Thermal Spray Technol., 2009, vol. 18, pp. 822–834.
  7. Shafiro B., Kachanov M. Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes // J. Appl. Phys., 2000, vol. 87(12), pp. 8561–8569.
  8. Wang Z., Kulkarni A., Deshpande S., Nakamura T., Herman H. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings // Acta Mater., 2003, vol. 51, iss. 18, pp. 5319–5334.
  9. Zvyagin A.V., Udalov A.S. A displacement discontinuity method of high-order accuracy in fracture mechanics // Moscow Univ. Mech. Bull., 2020, V. 75, pp. 153–159. https://doi.org/10.3103/S0027133020060060
  10. Zvyagin A.V., Udalov A.S., Shamina A.A. Boundary element method for investigating large systems of cracks using the Williams asymptotic series // Acta Astron., 2022, vol. 194, pp. 480–487.
  11. Zvyagin A.V., Udalov A.S., Shamina A.A. Numerical modeling of heat conduction in bodies with cracks // Acta Astron., 2023, vol. 214, pp. 196–201.
  12. Florence A.L., Goodier J.N. Thermal stresses due to disturbance of uniform heat flow by an insulated ovaloid hole // ASME. J. Appl. Mech., 1960, vol. 27(4), pp. 635–639.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The considered configuration of the medium

下载 (120KB)
3. Fig. 2. Analytical and numerical results of the temperature field of the verification problem

下载 (145KB)
4. Fig. 3. Dependence of the effective thermal conductivity coefficient on porosity

下载 (123KB)

版权所有 © Russian Academy of Sciences, 2025