A conservative numerical method for solving the Cahn–Hilliard equation
- 作者: Galeeva D.R.1, Kireev V.N.1, Kovaleva L.A.1, Musin A.A.1
-
隶属关系:
- Ufa University of Science and Technology
- 期: 卷 89, 编号 1 (2025)
- 页面: 136-148
- 栏目: Articles
- URL: https://jdigitaldiagnostics.com/0032-8235/article/view/688473
- DOI: https://doi.org/10.31857/S0032823525010101
- EDN: https://elibrary.ru/BNYENE
- ID: 688473
如何引用文章
详细
This paper presents a conservative numerical algorithm for solving the Cahn–Hillard equation. A method for linearizing the Cahn–Hillard equation is proposed, and a numerical scheme is constructed based on the control volume method. The implementation of the proposed numerical algorithm is described in detail. The conservativeness of the proposed discrete scheme is verified by numerical simulation. Numerical experiments were carried out.
全文:

作者简介
D. Galeeva
Ufa University of Science and Technology
编辑信件的主要联系方式.
Email: lara_wood@mail.ru
俄罗斯联邦, Ufa
V. Kireev
Ufa University of Science and Technology
Email: lara_wood@mail.ru
俄罗斯联邦, Ufa
L. Kovaleva
Ufa University of Science and Technology
Email: lara_wood@mail.ru
俄罗斯联邦, Ufa
A. Musin
Ufa University of Science and Technology
Email: lara_wood@mail.ru
俄罗斯联邦, Ufa
参考
- Nigmatulin R.I. Fundamentals of Mechanics of Heterogeneous Media. Moscow: Nauka, 1978. 336 p.
- Gueyffier D., Li J., Nadim A. et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows // J. Comput. Phys., 1999, vol. 152, pp. 423–456.
- Glimm J., Grove J.W., Li X.L. et al. Three-dimensional front tracking // SIAM J. Sci. Comput., 1998, vol. 19, pp. 703–727.
- Anderson D.M., McFadden G.B., Wheeler A.A. Diffuse-interface methods in fluid mechanics // Ann. Rev. Fluid Mech., 1998, vol. 30, pp. 139–165.
- Du Q., Feng X.-B. The phase field method for geometric moving interfaces and their numerical approximations // in: Handbook of Numerical Analysis. Vol. 21. Elsevier, 2020. pp. 425–508.
- Badalassi V.E., Ceniceros H.D., Banerjee S. Computation of multiphase systems with phase field models // J. Comput. Phys., 2003, vol. 190, pp. 371–397.
- Cahn J.W., Hilliard J.E. Free energy of a nonuniform system. I. Interfacial free energy // J. of Chem. Phys., 1958, vol. 28(2), pp. 258–267.
- Miranville A. The Cahn–Hilliard equation: recent advances and applications // SIAM, 2019.
- Lovrić A., Dettmer W., Perić D. Low order finite element methods for the Navier–Stokes–Cahn–Hilliard Equations // arXiv preprint, 2019, arXiv:1911.06718
- Choo S.M., Chung S.K. Conservative nonlinear difference scheme for the Cahn–Hilliard equation // Comput. Math. Appl., 1998, vol. 36. pp. 31–39.
- Choo S.M., Chung S.K., Kim K.I. Conservative nonlinear difference scheme for the Cahn–Hilliard equation II // Comput. Math. Appl., 2000, vol. 39, pp. 229–243.
- Elliott C.M. The Cahn–Hilliard model for the kinetics of phase separation // Math. Models for Phase Change Problems, 1989, pp. 35–73.
- Eyre D.J. An unconditionally stable one-step scheme for gradient systems // MRS Proc., 1998.
- Patankar S.V. Numerical Methods for Solving Problems of Heat Transfer and Fluid Dynamics. Moscow: MPEI, 1984. 145 p.
- Dhaouadi F., Dumbser M., Gavrilyuk S. A first-order hyperbolic reformulation of the Cahn–Hilliard equation // arXiv preprint, 2024, arXiv:2408.03862
- Li Y., Jeong D., Shin J., Kim J. A conservative numerical method for the Cahn–Hilliard equation with Dirichlet boundary conditions in complex domains // Comput.&Math. with Appl., 2013, vol. 65(1), pp. 102–115.
- Lifshitz I.M., Slezov V.V. Kinetics of precipitation from supersaturated solid solutions // J. of Phys.&Chem. of Solids, 1961, vol. 19(1–2), pp. 35–50.
- Naraigh O.L., Gloster A. A large-scale statistical study of the coarsening rate in models of Ostwald–Ripening // arXiv preprint, 2019, arXiv: 1911.03386
补充文件
