A conservative numerical method for solving the Cahn–Hilliard equation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

This paper presents a conservative numerical algorithm for solving the Cahn–Hillard equation. A method for linearizing the Cahn–Hillard equation is proposed, and a numerical scheme is constructed based on the control volume method. The implementation of the proposed numerical algorithm is described in detail. The conservativeness of the proposed discrete scheme is verified by numerical simulation. Numerical experiments were carried out.

全文:

受限制的访问

作者简介

D. Galeeva

Ufa University of Science and Technology

编辑信件的主要联系方式.
Email: lara_wood@mail.ru
俄罗斯联邦, Ufa

V. Kireev

Ufa University of Science and Technology

Email: lara_wood@mail.ru
俄罗斯联邦, Ufa

L. Kovaleva

Ufa University of Science and Technology

Email: lara_wood@mail.ru
俄罗斯联邦, Ufa

A. Musin

Ufa University of Science and Technology

Email: lara_wood@mail.ru
俄罗斯联邦, Ufa

参考

  1. Nigmatulin R.I. Fundamentals of Mechanics of Heterogeneous Media. Moscow: Nauka, 1978. 336 p.
  2. Gueyffier D., Li J., Nadim A. et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows // J. Comput. Phys., 1999, vol. 152, pp. 423–456.
  3. Glimm J., Grove J.W., Li X.L. et al. Three-dimensional front tracking // SIAM J. Sci. Comput., 1998, vol. 19, pp. 703–727.
  4. Anderson D.M., McFadden G.B., Wheeler A.A. Diffuse-interface methods in fluid mechanics // Ann. Rev. Fluid Mech., 1998, vol. 30, pp. 139–165.
  5. Du Q., Feng X.-B. The phase field method for geometric moving interfaces and their numerical approximations // in: Handbook of Numerical Analysis. Vol. 21. Elsevier, 2020. pp. 425–508.
  6. Badalassi V.E., Ceniceros H.D., Banerjee S. Computation of multiphase systems with phase field models // J. Comput. Phys., 2003, vol. 190, pp. 371–397.
  7. Cahn J.W., Hilliard J.E. Free energy of a nonuniform system. I. Interfacial free energy // J. of Chem. Phys., 1958, vol. 28(2), pp. 258–267.
  8. Miranville A. The Cahn–Hilliard equation: recent advances and applications // SIAM, 2019.
  9. Lovrić A., Dettmer W., Perić D. Low order finite element methods for the Navier–Stokes–Cahn–Hilliard Equations // arXiv preprint, 2019, arXiv:1911.06718
  10. Choo S.M., Chung S.K. Conservative nonlinear difference scheme for the Cahn–Hilliard equation // Comput. Math. Appl., 1998, vol. 36. pp. 31–39.
  11. Choo S.M., Chung S.K., Kim K.I. Conservative nonlinear difference scheme for the Cahn–Hilliard equation II // Comput. Math. Appl., 2000, vol. 39, pp. 229–243.
  12. Elliott C.M. The Cahn–Hilliard model for the kinetics of phase separation // Math. Models for Phase Change Problems, 1989, pp. 35–73.
  13. Eyre D.J. An unconditionally stable one-step scheme for gradient systems // MRS Proc., 1998.
  14. Patankar S.V. Numerical Methods for Solving Problems of Heat Transfer and Fluid Dynamics. Moscow: MPEI, 1984. 145 p.
  15. Dhaouadi F., Dumbser M., Gavrilyuk S. A first-order hyperbolic reformulation of the Cahn–Hilliard equation // arXiv preprint, 2024, arXiv:2408.03862
  16. Li Y., Jeong D., Shin J., Kim J. A conservative numerical method for the Cahn–Hilliard equation with Dirichlet boundary conditions in complex domains // Comput.&Math. with Appl., 2013, vol. 65(1), pp. 102–115.
  17. Lifshitz I.M., Slezov V.V. Kinetics of precipitation from supersaturated solid solutions // J. of Phys.&Chem. of Solids, 1961, vol. 19(1–2), pp. 35–50.
  18. Naraigh O.L., Gloster A. A large-scale statistical study of the coarsening rate in models of Ostwald–Ripening // arXiv preprint, 2019, arXiv: 1911.03386

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Ginzburg–Landau double-well potential

下载 (92KB)
3. Fig. 2. Control volume on the (x, y) plane

下载 (124KB)
4. Fig. 3. Comparison of exact and approximate solutions for the one-dimensional case at time T = 10

下载 (181KB)
5. Fig. 4. Evolution of phase separation for Cahn numbers (a–c) , , at times T = 0.1, 1, 10

下载 (998KB)
6. Fig. 5. Dependence of total free energy on time for different Cahn numbers: 1–4: Cn = 10–4, 5⋅10–5, 3⋅10–5, 2⋅10–5

下载 (140KB)
7. Fig. 6. Evolution of phase separation of a) symmetric and b) asymmetric liquids at times T = 1, 3, 10

下载 (980KB)
8. Fig. 7. Evolution of phase separation for boundary conditions a) Neumann and b) Dirichlet at times T = 1, 3, 10

下载 (983KB)

版权所有 © Russian Academy of Sciences, 2025