Surface electromagnetic fields of cladding modes of coreless optical fibers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The exact hybrid modes of a coreless optical fiber are calculated. Spatial distributions of electromagnetic fields near the cladding surface are obtained. A comparison of radial, azimuthal, and longitudinal field components near the cladding surface is performed for the hybrid exact modes and approximate linearly polarized (LP) modes. The polarization characteristics of the modes are studied taking into account the longitudinal field component depending on the type of hybrid modes and mode numbers. The combination of hybrid modes forms modes similar to LP modes, which have an almost uniform linear polarization inside the fiber far from the cladding surface. It is shown that under the cladding surface the polarization of LP-like modes is also linear, but significantly non-uniform in azimuthal angle with a deviation of the polarization angle by up to 21о from the main direction of mode polarization. In addition, the role of the longitudinal field component near the cladding surface increases significantly, where its value can exceed the values of the transverse components.

Full Text

Restricted Access

About the authors

M. A. Abel’mas

Ulyanovsk State Technical University

Author for correspondence.
Email: abelmax1998@mail.ru
Russian Federation, 32 Severny Venets St., Ulyanovsk, 432027

O. V. Ivanov

Kotelnikov Institute of Radio Engineering and Electronics RAS

Email: abelmax1998@mail.ru

Ulyanovsk Branch

Russian Federation, 48/2 Goncharova St., Ulyanovsk, 432011

References

  1. Волоконно-оптические датчики / Под ред. Э. Удда. М.: Техносфера, 2008.
  2. Chiang K. S., Liu Y., Liu Q., Rao Y. // Photonic Sensors. 2011. V. 1. № 3. P. 204.
  3. Wu Z., Liu B., Zhu J., Liu J. et al. // Chinese Opt. Lett. 2020. V. 18. № 6. P. 061201.
  4. Tripathi S. M., Kumar A., Varshney R. K. et al. // J. Lightwave Technol. 2009. V. 27. № 13. P. 2348.
  5. Kogelnik H., Schmidt R. // IEEE J. Quantum Electronics. 1976. V. 12. № 7. P. 396.
  6. Chiang K. S., Ng M. N., Liu Y., Li S. // Proc. Lasers Electro-Opt. Soc. 2000 Ann. Meeting, 15–16 Nov. Rio Grande. 2000. P. 836.
  7. Chan F. Y.M., Chiang K. S. // J. Lightwave Technol. 2006. V. 24. № 2. P. 1008.
  8. Kim M. J., Jung Y. M., Kim B. H. et al. // Opt. Express. 2007. V. 15. № 17. P. 10855.
  9. Jung Y., Brambilla G., Murugan G. S., Richardson D. J. // Appl. Phys. Lett. 2011. V. 98. № 2. 021109.
  10. Hong Z., Li X., Zhou L. et al. // Opt. Express. 2011. V. 19 № 5. P. 3854.
  11. Wu Q., Semenova Y., Ma Y. // J. Lightwave Technol. 2011. V. 29. № 24. P. 3683.
  12. Baiad M. D., Gagné M., Lemire-Renaud S. et al. // Opt. Express. 2013. V. 21. № 6. P. 6873.
  13. Cai Z., Liu F., Guo T. et al. // Opt. Express. 2015. V. 23. № 16. P. 20971.
  14. Schlangen S., Bremer K., Zheng Y. et al. // P. Soc. Photo-opt. Ins. 2018. V. 10681. 1068116.
  15. Zhang W., Huang L., Gao F. et al. // Opt. Lett. 2012. V. 37. P. 1241.
  16. Zhang C., Chiang K. S. // Opt. Eng. 2012. V. 51 № 7. 075001.
  17. Иванов О. В., Никитов С. А., Гуляев Ю. В. // Успехи физ. наук. 2006. Т. 49. № 2. С. 167.
  18. Lam P. K., Stevenson A. J., Love J. D. // Electron. Lett. 2000. V. 36. № 11. P. 967.
  19. Bachim B. L., Ogunsola O. O., Gaylord T. K. // Opt. Lett. 2005. V. 30. № 16. P. 2080.
  20. Chan F. Y. M., Kim M. J., Lee B. H. // J. Opt. Soc. Korea. 2005. V. 9. № 4. P. 135.
  21. Yukun B., Kin S. C. // J. Lightwave Technol. 2005. V. 23 № 12. P. 4363.
  22. Liu Y., Chiang K. S., Rao Y. J. et al. // Opt. Express. 2007. V. 15. № 26. P. 17645.
  23. Xue W., Lu M., Jun Y., Yuan L. // Acta Optica Sinica. 2010. V. 30. № 12. P. 3391.
  24. Abrishamian F., Morishita K. // IEICE T. Electron. 2015. V. 98. № 7. P. 512.
  25. Юсупова Л. И., Иванов О. В. // Радиотехника. 2019. № 9. С. 74.
  26. Xu X., Ouyang X., Zhou A. // Opt. Commun. 2019. V. 445. P. 1.
  27. Бутов О. В., Томышев К. А., Нечепуренко И. А. // Успехи физ. наук. 2022. Т. 192. С. 1385.
  28. Томышев К. А., Е. И. Долженко E. B., Бутов О. В. // Квант. электроника. 2021. Т. 51. № 12. С. 1113.
  29. Tomyshev K. A., Tazhetdinova D. K., Manuilovich E. S., Butov O. V. // J. Appl. Phys. 2018. V. 124. № 113106.
  30. Tomyshev K. A., Tazhetdinova D. K., Manuilovich E. S., Butov O. V. // Phys. Status Solidi. A. 2018. № 1800541.
  31. Tomyshev K. A., Manuilovich E. S., Tazhetdinova D. K. // Sens. Actuators, A. 2020. V. 308. № 112016.
  32. Manuilovich E. S., Tomyshev K. A., Butov O. V. // Sensors. 2019. V. 19. № 4245.
  33. Liu Y., Chiang K. S., Liu Q. // Opt. Express. 2007. V. 15. № 10. P. 6494.
  34. Kim M. J., Chan F. Y. M., Paek U. C., Lee B. H. // Proc. Optical Fiber Comm. Conf. and National Fiber Optic Engineers Conf. 5–10 March. 2006. Anaheim. P. 3.
  35. Han Y. G., Lee S. B., Kim C. S., Jeong M. Y. // Opt. Lett. 2006. V. 31 № 6. P. 703.
  36. Lo Y. L. // Opt. Eng. 2006. V. 45. № 12. Р. 125001.
  37. Kritzinger R., Meyer J., Burger J. // S. Afr. J. Sci. 2011. V. 107. № 5/6. P. 703.
  38. He Y. J., Chen X. Y. // IEEE Trans. 2013. V. NANO-12. № 3. P. 460.
  39. Fang L., Jia H. // Opt. Express. 2014. V. 22. № 10. P. 16621.
  40. Dong X. W., Feng S. C., Lu S. H. et al. // Acta Physica Sinica. 2007. V. 56. № 12. P. 7039.
  41. Liu Q., Chiang K. S., Liu Y. // J. Lightwave Technol. 2008. V. 26. № 18. P. 3277.
  42. Chiang K. S., Chan F. Y. M., Ng M. N. // J. Lightwave Technol. 2004. V. 22. № 5. P. 1358.
  43. Zhang W., Huang L., Gao F., Bo F. // Opt. Express. 2013. V. 21. № 14. P. 1358.
  44. Kawano K., Kitoh T. Introduction to Optical Waveguide Analysis: Solving Maxwell’s Equations and the Schrodinger Equation N. Y.: Wiley. 2001.
  45. Iizuka K. Elements of the Photonics / N.Y.: Wiley. 2002.
  46. Huang W. P. // J. Opt. Soc. Amer. A. 1994. V. 11. № 3. P. 963.
  47. Erdogan T. // J. Opt. Soc. Amer. A. 1997. V. 14. № 8. P. 1760.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the effective refractive indices of different modes on the wavelength.

Download (114KB)
3. Fig. 2. Dependence of the amplitudes of the transverse and longitudinal components of the electric field of the HE11 mode on the radius for λ = 1550 nm on a logarithmic scale over the entire cross-section of the fiber (a) and near the boundary (b).

Download (158KB)
4. Fig. 3. Dependence of the amplitudes of the transverse and longitudinal components of the electric field of the HE11 mode on the radius near the boundary on a linear scale.

Download (91KB)
5. Fig. 4. Angular dependences of the electric field components of the LP01-like mode: inside the fiber for r = 30 µm (a), under the surface (b) and above the surface of the fiber cladding (c).

Download (228KB)
6. Fig. 5. Distribution of the transverse electric field vector of the LP01-like mode inside the cladding, under and above the surface of the fiber cladding.

Download (85KB)
7. Fig. 6. Angular dependences of the electric field components of the mode: inside the fiber for r = 30 µm (a), under the surface of the fiber cladding (b), above the surface of the fiber cladding (c).

Download (264KB)
8. Fig. 7. Distribution of the transverse electric field vector of the -like mode inside the cladding, under and above the surface of the fiber cladding.

Download (73KB)
9. Fig. 8. Angular dependences of the electric field components of the mode: inside the fiber for r = 30 µm (a), under the surface of the fiber cladding (b), above the surface of the fiber cladding (c).

Download (256KB)
10. Fig. 9. Distribution of the transverse electric field vector of the -like mode inside the cladding, under and above the surface of the fiber cladding.

Download (73KB)

Copyright (c) 2024 Russian Academy of Sciences