Optimization of the waveguide structure of a plasma reactor supported by powerful microwave radiation of a gyrotron at a frequency of 24 GHz

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerical simulation of electromagnetic fields in a waveguide plasma torch has been carried out, in which microwave plasma heating is carried out by continuous radiation from a technological gyrotron with a frequency of 24 GHz and a power of up to 5 kW. It is shown that a decrease in the output diameter of the plasma torch makes it possible to more than double the amplitude of the electric field, but when the diameter decreases to 8 mm, the reflection coefficient increases significantly, which leads to reflected radiation entering the gyrotron. It is shown that taking into account the collision frequency corresponding to the real parameters of the atmospheric pressure discharge leads to a decrease in the reflection coefficient by more than 10. It has been experimentally confirmed that with a decrease in the output diameter of the plasma torch, the range of discharge maintenance parameters significantly expands, and the absorption coefficient exceeds 80%.

Full Text

Restricted Access

About the authors

D. A. Mansfeld

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics RAS

Author for correspondence.
Email: mda1981@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

N. V. Chekmarev

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics RAS

Email: mda1981@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

S. V. Sintsov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics RAS

Email: mda1981@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

A. V. Vodopyanov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics RAS

Email: mda1981@ipfran.ru
Russian Federation, 46 Ul’yanov Str., Nizhny Novgorod, 603950

References

  1. Sabchevski S., Glyavin, M., Mitsudo S. et al. // J. Infrared, Millimeter, Terahertz Waves. 2021. V. 42. P. 715. https://doi.org/10.1007/s10762-021-00804-8
  2. Egorov S.V., Eremeev A.G., Kholoptsev V.V. et al. // Rev. Sci. Instruments. 2022. V. 93. № 6. https://doi.org/10.1063/5.0093341
  3. Bogdashov A.A., Fokin A.P., Glyavin M.Yu. et al. // J. Infrared, Millimeter, Terahertz Waves. 2020. V. 41. P. 164. https://doi.org/10.1007/s10762-019-00655-4
  4. Мансфельд Д.А., Водопьянов А.В., Синцов С.В. и др. // Письма в ЖТФ. 2023. Т. 49. № 1. C. 39. https://doi.org/ 10.21883/PJTF.2023.01.54057.19384
  5. Мансфельд Д.А. // Тез. докл. конф. “Физика низкотемпературной плазмы”. Казань, 5–9.06.2023. Казань: Изд-во Казан. ун-та, 2023. С. 56.
  6. Raizer Yu.P. Gas Discharge Physics. New York: Springer, 1991.
  7. Yukikazu Itikawa // J. Phys. Chem. Ref. Data. 2002. V. 31. P. 749. https://doi.org/10.1063/1.1481879

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of the waveguide microwave plasmatron (a) and a photograph of the discharge (b).

Download (48KB)
3. Fig. 2. Model of microwave plasmatron in CST Microwave Studio environment.

Download (92KB)
4. Fig. 3. Distribution of the rms value of the electric field strength in the plasmatron in logarithmic scale at the outlet diameter of 10 (a) and 6 mm (b) and along the plasmatron axis in linear scale (c) for the outlet diameter of 6 (1) and 10 mm (2). Colour scale in logarithmic scale.

Download (162KB)
5. Fig. 4. Dependence of the reflection coefficient on the diameter of the plasmatron outlet.

Download (46KB)
6. Fig. 5. Dependence of the maximum value of the electric field strength on the plasmatron axis on the diameter of the plasmatron outlet at a source power of 1 W.

Download (51KB)
7. Fig. 6. Distribution of the rms value of the electric field strength in the plasmatron at an outlet diameter of 8 mm without plasma (a), with a plasma cylinder (black contour) with electron concentration ne = 6 × 1012 cm-3 (b) and at collision frequency νc = 1012 s-1 (c).

Download (151KB)
8. Fig. 7. Comparison of the reflection coefficient R (%) in the plasmatron model without plasma, with plasma cylinder, at ne = 6 × 1012 cm-3 without collisions and with collision plasma (νc = 1012 c-1) at different values of the plasmatron outlet diameter: d = 6 (1), 7 (2), 8 (3) and 10 mm (4).

Download (114KB)
9. Fig. 8. Dependence of the reflection coefficient R (1) and the transmission coefficient T (2) on the concentration of stemless plasma.

Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences