Nickel oxide epitaxial films and diode structures based on them

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Epitaxial NiO films on LiNbO3 substrates were produced using magnetron sputtering. Optimal conditions for deposition of NiO films to achieve their high crystalline perfection were found. Optical properties of NiO films were studied in the wavelength range of 250...800 nm. The band gap of nickel oxide was determined. Semiconductor diode structures in the form of interdigital Schottky barrier contacts to the epitaxial NiO film were fabricated. The current-voltage characteristics of the diode structures demonstrate low dark currents and the possibility of creating photodetectors for the UV part of the spectrum with a long-wavelength boundary of 340 nm on their basis.

Full Text

Restricted Access

About the authors

S. V. Averin

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Author for correspondence.
Email: sva278@ire216.msk.su
Russian Federation, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

V. A. Luzanov

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Russian Federation, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

V. A. Zhitov

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Russian Federation, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

L. Yu. Zaharov

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Russian Federation, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

V. M. Kotov

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Russian Federation, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

M. P. Temiryazeva

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Russian Federation, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

E. N. Mirgorodskaya

Fryazino branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: sva278@ire216.msk.su
Russian Federation, Vvedensii Squar. 1, Fryazino, Moscow oblast, 141190

References

  1. Gupta R.K., Hendi A.A., Cavas M. et al. // Phys. E. 2014. V. 56. P. 288.
  2. Choi J.-M., Im S. // Appl. Surface Sci. 2005. V. 244. № 1-4. P. 435.
  3. Steinebach H., Kannan S., Rieth L., Solzbacher F. // Sensors Actuators B: Chem. 2010. V. 151. P. 162.
  4. Sato H., Minami T., Takata S., Yamada T. // Thin Solid Films. 1993. V. 236. № 1-2. P. 27.
  5. Lou X.C., Zhao X.J., He X. // Solar Energy. 2009. V. 83.№ 12. P. 2103.
  6. Shinde V.R., Gujar T.P., Lokhande C.D. et al. // Mater. Chem. Phys. 2006. V. 96. № 2-3. P. 326.
  7. Park S.-W., Choi J.M., Kim E., Im S. // Appl. Surf. Sci. 2005. V. 244. № 1. P. 439.
  8. Ohta H., Hirano M., Nakahara K. et al. // Appl. Phys. Lett. 2003. V. 83. № 5. P. 1029.
  9. Kakehi Y., Nakao S., Satoh K., Kusaka T. // J. Crystal Growth. 2002. V. 237–239. Pt. 1. P. 591.
  10. Lindahl E., Lu J., Ottosson M., Carlsson J.-O. // J. Crystal Growth. 2009. V. 311. № 16. P. 4082.
  11. Wang Y., Ghanbaja J., Boulet P. et al. // Acta Materialia. 2019. V. 164. P. 648.
  12. Ahmed A.A., Devarajan M., Afzal N. // Sensors and Actuators A: Phys. 2017. V. 262. P. 78.
  13. Manjnatra K.N., Paul Sh. // Appl. Surface Sci. 2015. V. 352. P. 10.
  14. Лузанов В.А. // РЭ. 2020. Т. 65. № 12. С. 1206.
  15. Бланк Т.Б., Гольдберг Ю.А. // Физика и техника полупроводников. 2003. Т. 37. № 9. С. 1025.
  16. Lin D.Y., Chen W.L., Lin W.C. et al. // Phys. Stat. Solidi. 2006. V. C-3. № 6. P. 1983.
  17. Surender S., Probakaran K., Pradeep S. et al. // Opt. Mater. 2023. V. 136. Article No. 113462.
  18. Tauc J. // Mater. Res. Bull. 1968. V. 3. № 1. P. 37.
  19. Hadi A.A., Badr B.A., Mahdi R.O., Khashan K.S. // Optic-Int. J. Light and Electron Optics. 2020. V. 219. Article No. 165019.
  20. Averine S.V., Chan Y.C., Lam Y.L. // Solid-State Electron. 2001. V. 45. № 3. P. 441.
  21. Ahmed A.A., Hashim M.R., Abdalrheem R., Rashid M. // J. Alloys Comp. 2019. V. 798. P. 300.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Swing curve for sample 2, NiO epitaxial layer thickness of 300 nm.

Download (71KB)
3. Fig. 2. Surface fragment of NiO/LiNbO3 heterostructure (a) and its morphology (b); image obtained with an atomic force microscope.

Download (376KB)
4. Fig. 3. Surface fragment of the original LiNbO3 substrate (AFM image); RMS height of irregularities RMS = 0.25 nm.

Download (130KB)
5. Fig. 4. Transmission spectra of the investigated samples: 1 - LiNbO3 substrate only, 2-5 - heterostructures NiO film/LiNbO3 substrate with NiO layer of different thickness: d = 300 nm (2) sample 2, d = 320 nm (3) sample 3, d = 380 nm (4) sample 4, d = 525 nm (5) sample 5.

Download (78KB)
6. Fig. 5. Graph of (αhν)2 = f (hν) for the determination of Eg in the deposited films, sample 2.

Download (60KB)
7. Fig. 6. Diode MPM structure in section: width of NiAu counter-pin contacts and spacing of 10 μm, active diode area 500 × 500 μm2.

Download (48KB)
8. Fig. 7. Volt-ampere characteristics of diode MFM structures at different NiO film thicknesses: d = 200 (1), 100 (2) and 50 nm (3).

Download (69KB)

Copyright (c) 2024 Russian Academy of Sciences