Features of simulation of periodic steady-state in nonlinear networks with memristor devices

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The numerical properties of applying the method to compute the periodic solutions in the analysis of circuits with memristor devices are considered. The modification of the iterative procedure is proposed, which makes it possible to improve numerical properties in simulation of periodic modes by taking into account the characteristics of memristors. Examples of simulation confirming the operability of the developed computational procedure are given.

Full Text

Restricted Access

About the authors

S. G. Rusakov

Institute for Design Problems in Microelectronics of RAS

Author for correspondence.
Email: rusakov@ippm.ru
Russian Federation, Zelenograd, Moscow

S. L. Ulyanov

Institute for Design Problems in Microelectronics of RAS

Email: rusakov@ippm.ru
Russian Federation, Zelenograd, Moscow

References

  1. Chua L. // IEEE Trans. 1971. V. CT-18. № 9. P 507.
  2. Chua L., Kang S.M. // Proc. IEEE. 1976. V. 64. № 2. P. 209.
  3. Strukov D.B., Snider G.S., Stewart D.R. // Nature. 2008. V. 453. № 719. P. 80.
  4. Handbook of Memristor Networks / Eds. by L. Chua, G.Ch. Sirakoulis, A.A. Adamatzky. Cham: Springer, 2019. https://doi.org/10.1007/978-3-319-76375-0_1
  5. Xu W., Wang J., Yan X. // Front. Nanotechnol. 2021. V. 3. Article No. 645995. https://doi.org/10.3389/fnano.2021.645995
  6. Zidan M.A., Strachan J.P., Lu W.D. // Nature Electronics. 2018. V. 1. № 1. P. 22.
  7. Михайлов A., Грязнов Е., Лукоянов В. и др. // Физмат. 2023. T. 1. № 1. C. 42. https://doi.org/10.56304/S2949609823010021
  8. Itoh M., Chua L.O. // Int. J. Bifurcation Chaos. 2008. V. 18. № 11. P. 3183. https://doi.org/10.1142/S0218127408022354
  9. Radwan A.G., Fouda M.E. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor. Cham: Springer. 2015. P. 35. https://doi.org/10.1007/978-3-319-17491-4_4
  10. Zidan M., Omran H., Smith C. et al. // Int. J. Circuit Theory and Applications. 2014. V. 42. № 11. P. 1103. https://doi.org/10.1002/cta.1908
  11. Kyriakides E., Georgiou J. // Int. J. Circuit Theory and Applications. 2015. V. 43. № 11. P. 1801.
  12. Ракитин В.В., Русаков С.Г. // РЭ. 2017. Т. 62. № 6. С. 601. https://doi.org/10.1134/S1064226917060183
  13. Rakitin V.V., Rusakov S.G. Memristors — An Emerging Device for Post-Moore’s Computing and Applications/Ed. by Yao-Feng Chang. L.: IntechOpen, 2021. P. 317. https://www.intechopen.com/chapters/76801
  14. Ракитин В.В., Русаков С.Г., Ульянов С.Л. // Наноиндустрия. 2023. Т. 16. № S9–2 (119). С. 399.
  15. Potrebić M., Tošić D., Biole D. Advances in Memristors, Memristive Devices and Systems / Eds. by S. Vaidyanathan, C. Volos. Cham: Springer, 2017. P. 159. https://doi.org/10.1007/978-3-319-51724-7_7
  16. Radwan A.G., Fouda M.E. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor. Cham: Springer, 2015. P. 13. https://doi.org//10.1007/978-3-319-17491-4_2.
  17. Pi S., Ghadiri-Sadrabadi M., Bardin J.C., Xia Q. // Proc. 2016 IEEE Int. Symp. On Circuits and Systems. Montreal. 22–25 May N.Y.: IEEE, 2016. P. 377.
  18. Potrebić M., Tošić D., Biolek D. // Int. J. Circuits Theory and Applications. 2018. V. 46. № 1. P. 113.
  19. Marković I., Potrebić M., Tošić D. // Micromachines. 2023. V.14. № 11. Article No. 2064. https://doi.org/10.3390/mi14112064
  20. Li D., Zhang J., Yu D., Xu R. et al. // IEEE Access. 2020. V. 8. P. 60199. https://doi.org/10.1109/ACCESS.2020.2982977
  21. Yener Ç., Mutlu R., Kuntman H.H. // Optoelectronics and Advanced Materials-Rapid Commun. 2018. V. 12. № 1–2. P. 55. https://hdl.handle.net/20.500.12619/64885
  22. Yener Ç., Mutlu R., Kuntman H.H. // 2017 10th Int. Conf. on Electrical and Electronics Engineering (ELECO). Bursa. 30 Nov.–02 Dec. N.Y.: IEEE, 2017. P. 1221.
  23. Sözen H., Çam U. // 8th Int. Conf. on Electrical and Electronics Engineering (ELECO). Bursa. Turkey. 2013. P. 45–48. https://doi.org/10.1109/ELECO.2013.6713933
  24. Göknar I.C., Öncül F., Minayi E. // IEEE Antennas Propagation Magaz. 2013. V. 55. P. 304.
  25. Elashkar N.E., Aboudina M., Ibrahim G.H. et al. // 2020 IEEE63rd Int. Midwest Symposium on Circuits and Systems (MWSCAS). Springfield. 09–12 Aug. N.Y.: IEEE, 2020. P. 826.
  26. Gao R., Shen Y. // Micromachines. 2022. V. 13. № 8. P. 1306.
  27. Biolek Z., Biolek D., Biolkova V. // Radioengineering. 2009. V. 18. № 2. P. 210.
  28. Mazumder P., Kang S-M., Waser R. // Proc. IEEE. 2012. V. 100. № 6. P. 1911.
  29. Yakopcic C., Taha T.M., Subramanyam G. et al. // IEEE Trans. 2013. V. CAD-32. № 8. P. 1201.
  30. Mladenov V. Advanced Memristor Modeling, Memristor Circuits and Networks Memristor Modeling, Memristor Devices, Circuits and Networks. Basel: MDPI, 2019. https://doi.org/10.3390/books978-3-03842-103-0
  31. Joglekar Y., Wolf S.J. // Europ. J. Phys. 2009. V. 30. № 4. P. 661.
  32. Kvatinsky S., Friedman E.G., Kolodny A. et al. // IEEE Trans. 2012. V. CS-60. № 1. P. 211.
  33. Kvatinsky S., Ramadan M., Friedman E.G. et al. // IEEE Trans. 2015. Vol. CS-62. № 8. P. 786.
  34. Мещанинов Ф.П., Горнев Е.С., Кожевников В.С. и др. // Наноиндустрия. 2020. № S96–2. С. 556.
  35. Китаев А.Е., Белов А.И., Гусейнов Д.В., Михайлов А.Н. // РЭ. 2023. T. 68. № 3. C. 295.
  36. Pickett M.D., Strukov D.B., Borghetti J.L. et al. // J. Appl. Phys. 2009. V. 106. № 7. P. 16.
  37. Lehtonen E., Laiho M. CNN Using Memristors for Neighborhood Connections // Proc. Int. Workshop on Cellular Nanoscale Networks and their Applications. Berkeley, CA, USA. 2010. P. 14.
  38. Wang T., Roychowdhury J.S. // arxiv.org/pdf/1605. 04897
  39. Chua L. // Appl Phys A. 2018. V. 124. № 8. P. 563.
  40. Elashkar N.E., Ibrahim G.H., Aboudina M. et al. // 2016 5th Int. Conf. on Electronic Devices, Systems and Applications (ICEDSA). Ras Al Khaimah, 6–8 Dec. N.Y.: IEEE, 2016. Paper No. 7818542.
  41. Актуальные проблемы моделирования в системах автоматизации схемотехнического проектирования / Под ред. А.Л. Стемпковского. М.: Наука, 2003.
  42. Русаков С.Г. // Автоматизация проектирования. 1997. № 2. https://www.osp.ru/ap/1997/02/13031608
  43. Kundert K.S., White J., Sangiovanni-Vincentelli A. Steady-State Methods for Simulating Analog and Microwave Circuits. Boston: Kluwer Academic Publishers, 1990.
  44. Kundert K.S. // J. Sol.-St. Circuits. 1999. V. 34. № 9. P. 1298.
  45. Гурарий М.М., Русаков С.Г., Зарудный Д.И. // Автоматика и вычислительная техника. 1973. № 1. C. 83.
  46. Aprille T.J., Trick T.N. // Proc. IEEE. 1972. V. 60. № 1. P. 108. https://doi.org/10.1109/PROC.1972.8563
  47. Telichevesky R., Kundert K., White J. // Proc. 32nd IEEE Design Automation Conf. San Francisco. 12–16 Jun.1995. N.Y.: IEEE, 1995. P. 480.
  48. Данилов Л.В. Электрические цепи с нелинейными R-элементами. Л.: Связь, 1974.
  49. Pabst O., Schmidt T. // J. Electrical Bioimpedance. 2013. V. 4. P. 23.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of a frequency modulation demodulator based on the average level shift of the memristor resistance [25].

Download (322KB)
3. Fig. 2. An example of modeling a demodulator circuit: time diagrams of changes in the memristor state variable and output voltage in the integration interval variants of 60 periods (a), 600 periods (b), 6,000 periods (c). In variant (c), a steady-state solution independent of the initial conditions is obtained. The initial resistance of the memristor: 8 (curves 1), 11 (curves 2), and 15 kOhm (curves 3).

Download (936KB)
4. Fig. 3. Low-pass filter based on MC circuit [21, 22].

Download (33KB)
5. Fig. 4. Different periodic solutions obtained in modeling the MC circuit (Fig. 3) for different initial values ​​of the memristor resistance: for a large value of R(0) (curves 1), for a small value of R(0) (curves 2). Here V(1)–V(2) is the voltage on the memristor (a), z is the state variable (b).

Download (254KB)
6. Fig. 5. Controlled active filter with a memristor device [19]; ​​OP – operational amplifier.

Download (121KB)
7. Fig. 6. Output signal diagram for z0 = 0.2 (curve 1) and z0 = 0.9 (curve 2).

Download (119KB)
8. Fig. 7. Periodic solutions obtained by simulating the demodulator circuit (Fig. 1) for the initial values ​​of the memristor state variable z0 0.1 (curve 1) and 0.9 (curve 2).

Download (298KB)
9. Fig. 8. Schematic diagram of a bridge rectifier [49].

Download (169KB)
10. Fig. 9. Timing diagrams for the input sinusoidal signal Vin (curves 1), output voltage Vout = V(1) – V(2) across the resistance R1 (curves 2), changes in the states of the memristors z1, z2 (curves 3, 4), obtained during the simulation of the bridge rectifier (Fig. 8) for the initial values ​​of the memristor resistances of the devices: (a) — R1(0) = R4(0) = 2 kOhm, R2(0) = R3(0) = 8 kOhm, (b) — R1 (0) = R4 (0) = 8 kOhm, R2(0) = R3(0) = 2 kOhm.

Download (434KB)
11. Fig. 10. The correct periodic solution obtained by using a two-level iterative procedure for modeling the controlled active filter circuit (Fig. 5). Vout is the output signal of the circuit, z is the state variable of the memristor model.

Download (186KB)
12. Fig. 11. Timing diagrams for: output voltage Vout = V(1)–V(2) on resistance R1 (curve 1) and changes in the states of memristors z1, z2 (curves 2, 3), obtained during modeling of a bridge rectifier (Fig. 8) for initial values ​​of memristor resistances R(0) = 2 kOhm and state variable z0 = 0.88 of devices M1 and M4.

Download (222KB)
13. Fig. 12. Results of calculating the steady-state periodic mode when simulating a low-pass MC filter: time diagrams of the state variable (a) and the voltage on the memristor VM = V(1)–V(2) (b) for the initial value of the state variable z0: 0.11 (curves 1) and 0.92 (curves 2).

Download (259KB)
14. Fig. 13. Timing diagrams for modeling the steady-state periodic operating mode of the demodulator (Fig. 1): (a) — output signal; (b) — memristor state variable for the initial values ​​of the memristor state variable z0: 0.14 (curves 1) and 0.86 (curves 2).

Download (213KB)

Copyright (c) 2025 Russian Academy of Sciences