Investigation of efficiency of DoA algorithm on the base of experimental data and numerical simulations in automotive distributed system of incoherent radars

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Investigation of efficiency of proposed DoA estimation algorithm for system of distributed incoherent automotive radars is performed on the base of experimental data and numerical simulation. It is shown that the proposed algorithm correctly recognizes the position of targets in considered experimental scenarios. Comparative numerical simulations show the efficiency of the proposed algorithm compared to the characteristics of single radar.

Sobre autores

I. Artyukhin

Nizhny Novgorod State University n. a. N.I. Lobachevsky

Autor responsável pela correspondência
Email: artjukhin@rf.unn.ru
Rússia, Gagarina ave., 23, Nizhny Novgorod, 603950

A. Flaksman

Nizhny Novgorod State University n. a. N.I. Lobachevsky

Email: artjukhin@rf.unn.ru
Rússia, Gagarina ave., 23, Nizhny Novgorod, 603950

A. Rubtsov

Nizhny Novgorod State University n. a. N.I. Lobachevsky

Email: artjukhin@rf.unn.ru
Rússia, Gagarina ave., 23, Nizhny Novgorod, 603950

Bibliografia

  1. Gottinger M., Hoffmann M., Christmann M. et. al. // IEEE J. Microwaves. 2021. V. 1. № 1. P. 149. https://doi.org/10.1109/JMW.2020.3034475
  2. Waldschmidt C., Hasch J., Menzel W. // IEEE J. Microwaves. 2021. V. 1. P. 135. https://doi.org/10.1109/JMW.2020.3033616
  3. Черняк В.С. Многопозиционная радиолокация. М.: Радио и связь, 1993.
  4. Patole S., Torlak M., Wang D., Ali M. // IEEE Signal Process. Mag. 2017. V. 34. № 2. P. 22. https://doi.org/10.1109/MSP.2016.2628914
  5. Ziegler J., Bender Ph., Schreiber M. et al. // IEEE Intell. Transp. Syst. Mag. 2014. V. 6. № 2. P. 8. https://doi.org/10.1109/MITS.2014.2 306552
  6. Deng H. // IEEE Aerosp. Electron. Syst. Mag. 2012. V. 27. № 5. P. 28. https://doi.org/10.1109/MAES.2012.6226692
  7. Bialer O., Jonas A., Tirer T. // IEEE Sensors J. 2021. V. 21. № 16. P. 17846. https://doi.org/10.1109/JSEN.2021.3085677
  8. Folster F., Rohling H., Lubbert U. // IEEE Int. Radar Conf. 2005. P. 871. https://doi.org/10.1109/RADAR.2005.1435950
  9. Bialer O., Kolpinizki S. // IEEE Int. Conf. on Acoustics, Speech and Signal Processing. 2019. P. 4175. https://doi.org/10.1109/ICASSP.2019.8682458
  10. Артюхин И.В., Аверин И.М., Флаксман А.Г., Рубцов А.Е. // Журн. радиоэлектроники. 2023. № 4. https://doi.org/10.30898/16841719.2023.4.2
  11. Артюхин И.В., Аверин И.М., Флаксман А.Г., Рубцов А.Е. // IX Int. Conf. “Engineering & Telecommunication En&T-2022”. М.: МФТИ. 2022. С. 5.
  12. Widrow B., Stearn S.D. Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, 1985.
  13. Tuncer T.E., Friedlander B. Classical and Modern Direction-of-Arrival Estimation. Burlington; MA: Acad. Press, Inc. 2009.
  14. Li J., Stoica P. MIMO Radar Signal Processing. Hoboken; N.J.: Wiley-IEEE Press, 2009.
  15. Patole S., Torlak M., Wang D., Ali M. // IEEE Signal Processing Magazine. 2017. V. 34. № 2. P. 22. https://doi.org/10.1109/MSP.2016.2628914

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024