Forecasting the propagation of long, medium and short radio waves over the impedan ice-sea structure

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The field of a vertical electric dipole over a flat impedance surface is considered. Formulas for calculating the attenuation function of the ground wave field over real impedance underlying media are presented. The reduced surface impedance is determined at the boundary of the “ground-air” media and is expressed by the ratio of the tangential components of the electric and magnetic fields. For layered underlying media, the surface impedance is calculated using a recurrent formula that takes into account the thickness and electrical properties of each layer (dielectric constant and resistivity). The effects associated with the presence of a surface electromagnetic wave (SEW), when the electromagnetic field exhibits a clearly expressed surface character, are established. It is shown that the conditions for the propagation of long, medium and short radio waves over the “ice-sea” structure with a highly inductive impedance are more favorable than over an ideally conducting medium due to the occurrence of SEW.

全文:

受限制的访问

作者简介

M. Dembelov

Institute of Physical Materials Science of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: mdembelov@mail.ru
俄罗斯联邦, Str. Sakhyanovoy, 6, Ulan-Ude, 670047

Yu. Bashkuev

Institute of Physical Materials Science of the Russian Academy of Sciences

Email: mdembelov@mail.ru
俄罗斯联邦, Str. Sakhyanovoy, 6, Ulan-Ude, 670047

参考

  1. Фок В. А. Проблемы дифракции и распространения электромагнитных волн. М.: Сов. радио, 1970.
  2. Фейнберг Е. Л. Распространение радиоволн вдоль земной поверхности. М.: Физматлит, 1999.
  3. Wait J. R. Electromagnetic Waves in Stratified Media. N. Y.: Pergamon Press, 1962.
  4. Макаров Г. И., Новиков В. В., Рыбачек С. Т. Распространение электромагнитных волн над земной поверхностью. М.: Наука, 1991.
  5. Башкуев Ю. Б., Хаптанов В. Б., Дембелов М. Г. // Письма в ЖТФ. 2010. Т. 36. № 3. С. 88.
  6. Башкуев Ю. Б., Дембелов М. Г., Хаптанов В. Б. // Изв. вузов. Радиофизика. 2021. Т. 64. № 8–9. С. 611.
  7. Витязева В. А., Голдина Л. П., Запорожцева И. В. и др. // Проблемы дифракции и распространения волн. Л.: Изд-во ЛГУ, 1982. Вып. 18. С. 183.
  8. Пылаев А. А., Тамкун Л. Г., Трегубов А. Г. // Тез. докл. XVII Межвед. сем. по распространению километровых и более длинных радиоволн. Томск: изд-во ТГУ, 1991. С. 64.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Changes in the attenuation function modulus depending on the distance above a highly inductive medium with a constant surface impedance |δ| = 0.1; arg δ = –75° at different frequencies: 100 (1) and 500 kHz (2), 1 (3), 3 (4) and 5 MHz (5).

下载 (19KB)
3. Fig. 2. Change in |W| (a) and arg W (b) depending on the modulus of the numerical distance |SR| for surface impedance arguments: a) –89 (1), –45 (2), 0 (3), 89 (4) and 45 deg (5); b) –45 (1), –89 (2), 0 (3), 45 (4) and 89 deg (5).

下载 (34KB)
4. Fig. 3. Change in the modulus of the attenuation function at a frequency of 5 MHz over a highly inductive path (a) and the moduli of the attenuation function of spatial and surface waves (b): 1 – spatial wave; 2 – surface wave.

下载 (19KB)
5. Fig. 4. Comparative graphs of the calculated and measured values ​​of the attenuation function modulus obtained for the highly inductive ice-salt water medium on Lake Solenoye in 2009 (a) and 2020 (b): 1 – calculation based on pre-calculated δ values; 2 – calculation based on selected δ values; 3 – measured values.

下载 (21KB)

版权所有 © Russian Academy of Sciences, 2024