Infestation of young northern pike Esox Lucius (esocidae) with macroparasites in different reaches of the river continuum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The composition of infracommunities and quantitative characteristics of infestation of underyearlings of northern pike Esox lucius with macroparasites have been studied in the small Ild River (a second-order tributary of the Rybinsk Reservoir) from different reaches of the river continuum (from the upper reaches to the mouth). The number of parasite species, mean abundance, and prevalence were significantly higher in the lower reaches than in the upper reaches of the river. Pike samples from different reaches significantly differed in the infection variability between the individuals. The highest coefficient of variation in the number of parasites in one fish individual was observed in the sample from the upper reaches (162%), while it was significantly lower in individuals from the middle and lower reaches (89 and 57%, respectively). Among various parasites from the lower part of the river, we have recorded manipulators of host behavior, which increase the fish availability for predators. These include several trematode species (Trematoda) of the family Diplostomidae. Underyearlings from the sample from the upper reaches were most variable in size, dominated by small individuals. The specimens from the lower reaches were characterized by a minimum variability in body length. The largest (on average) individuals were recorded in the sample from the middle reaches. Parasites are presumably a significant factor influencing the pike population structure and migratory activity, which is usually considered a sedentary species.

Full Text

Restricted Access

About the authors

А. Е. Zhokhov

Papanin Institute of Biology for Inland Waters, Russian Academy of Sciences

Author for correspondence.
Email: zhokhov@ibiw.ru
Russian Federation, Borok

V. N. Mikheev

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: zhokhov@ibiw.ru
Russian Federation, Moscow

References

  1. Быховская-Павловская И.Е. 1985. Паразиты рыб. Руководство по изучению. Л.: Наука, 121 с.
  2. Жохов А.Е., Пугачева М.Н. 2023. Факторы, влияющие на распределение Azygia lucii в популяции дефинитивного хозяина // Биология внутр. вод. № 1. С. 115–124. https://doi.org/10.31857/S0320965223010205
  3. Иванова М.Н., Свирская А.Н. 2013. О размерной иерархии у молоди щуки Esox lucius // Вопр. ихтиологии. Т. 53. № 3. С. 327–340. https://doi.org/10.7868/S0042875213030041
  4. Крылов А.В., Папченков В.Г., Цельмович О.Л. и др. 2007. Развитие основных элементов биоты на разнотипных биотопах реки и ее распределение по продольному профилю // Экосистема малой реки в изменяющихся условиях среды. М.: Т-во науч. изд. КМК. С. 329–345.
  5. Михеев В.Н. 2011. Моноксенные и гетероксенные паразиты рыб по-разному манипулируют поведением хозяев // Журн. общ. биологии. Т. 72. № 3. C. 183–197.
  6. Михеев В.Н., Жохов А.Е., Сливко В.М. 2013. Может ли риск заражения паразитами служить причиной экологической дифференциации в популяции плотвы Rutilus rutilus (Cyprinidae)? // Вопр. ихтиологии. Т. 53. № 5. С. 613–620. https://doi.org/10.7868/S004287521305007X
  7. Определитель паразитов пресноводных рыб фауны СССР. 1987. Т. 3. Паразитические многоклеточные (Вторая часть). Л.: Наука, 583 с.
  8. Павлов Д.С. 1979. Биологические основы управления поведением рыб в потоке воды. М: Наука, 319 с.
  9. Сливко В.М., Жохов А.Е., Гопко М.В., Михеев В.Н. 2021. Агонистическое поведение молоди окуня Perca fluviatilis: влияние размеров рыб и заражённости макропаразитами // Вопр. ихтиологии. Т. 61. № 3. С. 356–361. https://doi.org/10.31857/S0042875221030164
  10. Тютин А.В., Извекова Г.И. 2013. Зараженность моллюсков и рыб трематодой Apophallus muehlingi (Jagerskiold, 1898) и особенности ее взаимоотношений с промежуточными хозяевами // Биология внутр. вод. № 1. С. 61–66. https://doi.org/10.7868/S0320965212030151
  11. Altizer S., Bartel R., Han B.A. 2011. Animal migration and infectious disease risk // Science. V. 331. № 6015. P. 296–302. https://doi.org/10.1126/science.1194694
  12. Barber I., Hoare D., Krause J. 2000. Effects of parasites on fish behaviour: a review and evolutionary perspective // Rev. Fish Biol. Fish. V. 10. № 2. P. 131–165. https://doi.org/10.1023/A:1016658224470
  13. Bohl E. 1980. Diel pattern of pelagic distribution and feeding in planktivorous fish // Oecologia V. 44. № 3. P. 368–375. https://doi.org/10.1007/BF00545241
  14. Brabrand Å., Faafeng B. 1993. Habitat shift in roach (Rutilus rutilus) induced by pikeperch (Stizostedion lucioperca) introduction: predation risk versus pelagic behavior // Ibid. V. 95. № 1. P. 38–46. https://doi.org/10.1007/BF00649504
  15. Brodersen J., Nicolle A., Nilsson P.A. et al. 2011. Interplay between temperature, fish partial migration and trophic dynamics // Oikos. V. 120. № 12. P. 1838–1846. https://doi.org/10.1111/j.1600-0706.2011.19433.x
  16. Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited // J. Parasitol. V. 83. № 4. P. 575–583. https://doi.org/10.2307/3284227
  17. Coleman F.C., Travis J. 1998. Phenology of recruitment and infection patterns of Ascocotyle pachycystis, a digenean parasite in the sheepshead minnow, Cyprinodon variegatus // Environ. Biol. Fish. V. 51. № 1. Р. 87–96. https://doi.org/10.1023/A:1007341322937
  18. Curtis W.J., Gebhard A.E., Perkin J.S. 2018. The river continuum concept predicts prey assemblage structure for an insectivorous fish along a temperate riverscape // Freshw. Sci. V. 37. № 3. P. 618–630. https://doi.org/10.1086/699013
  19. Dodson J.J. 1997. Fish migration: an evolutionary perspective // Behavioural ecology of teleost fishes. Oxford: Oxford Univ. Press. P. 10–36. https://doi.org/10.1093/oso/9780198547846.003.0002
  20. Ebert D. 1994. Virulence and local adaptation of a horizontally transmitted parasite // Science. V. 265. № 5175. P. 1084–1086. https://doi.org/10.1126/science.265.5175.1084
  21. Giam X., Olden J.D. 2016. Environment and predation govern fish community assembly in temperate streams // Glob. Ecol. Biogeogr. V. 25. № 10. P. 1194–1205. https://doi.org/10.1111/geb.12475
  22. Fuiman L.A., Magurran A.E. 1994. Development of predator defences in fishes // Rev. Fish Biol. Fish. V. 4. № 2. P. 145–183. https://doi.org/10.1007/BF00044127
  23. Gliwicz Z.M., Slon J., Szynkarczyk I. 2006. Trading safety for food: evidence from gut contents in roach and bleak captured at different distances offshore from their daytime littoral refuge // Freshw. Biol. V. 51. № 5. P. 823–839. https://doi.org/10.1111/j.1365-2427.2006.01530.x
  24. Johnson M.W., Dick T.A. 2001. Parasite effects on the survival, growth, and reproductive potential of yellow perch (Perca flavescens Mitchill) in Canadian Shield lakes // Can. J. Zool. V. 79. № 11. Р. 1980–1992. https://doi.org/10.1139/z01-155
  25. Harrison E.J., Hadley W.F. 1982. Possible effects of black-spot disease on northern pike // Trans. Am. Fish. Soc. V. 11. № 1. P. 106–109. https://doi.org/10.1577/1548-8659(1982)111%3C106:PEOBDO%3E2.0.CO;2
  26. Hulthén K., Chapman B.B., Nilsson P.A. et al. 2015. Escaping peril: perceived predation risk affects migratory propensity // Biol. Lett. V. 11. № 8. Article 20150466. https://doi.org/10.1098/rsbl.2015.0466
  27. Humphries P., Keckeis H., Finlayson B. 2014. The river wave concept: integrating river ecosystem models // BioScience. V. 64. № 10. P. 870–882. https://doi.org/10.1093/biosci/biu130
  28. Kabata Z. 1981. Copepoda (Crustacea) parasitic on fishes: problems and perspectives // Advances in parasitology. V. 19. London: Acad. Press, 71 р. https://doi.org/10.1016/S0065-308X(08)60265-1
  29. Kalbe M., Kurtz J. 2006. Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum // Parasitology. V. 132. № 1. P. 105–116. https://doi.org/10.1017/S0031182005008681
  30. Koprivnikar J., Penalva L. 2015. Lesser of two evils? Foraging choices in response to threats of predation and parasitism // PLoS One. V. 10. № 1. Article e0116569. https://doi.org/10.1371/journal.pone.0116569
  31. Kramer D.L., Rangeley R.W., Chapman L.J. 1997. Habitat selection: patterns of spatial distribution from behavioural decisions // Behavioural ecology of teleost fishes. Oxford: Oxford Univ. Press. P. 37–80. https://doi.org/10.1093/oso/9780198547846.003.0003
  32. Lemly A.D., Esch G.W. 1984. Effects of the trematode Uvulifer ambloplitis on juvenile bluegill sunfish, Lepomis macrochirus: ecological implications // J. Parasitol. V. 70. № 4. P. 475–492. https://doi.org/10.2307/3281395
  33. Magnadottir B., Lange S., Gudmundsdottir S. et al. 2005. Ontogeny of humoral immune parameters in fish // Fish Shellfish Immunol. V. 19. № 5. P. 429–439. https://doi.org/10.1016/j.fsi.2005.03.010
  34. Margolis L., Esch G.W., Holmes J.C. et al. 1982. The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists) // J. Parasitol. V. 68. № 1. P. 131–133. https://doi.org/10.2307/3281335
  35. Mehner T., Kasprzak P. 2011. Partial diel vertical migrations in pelagic fish // J. Anim. Ecol. V. 80. № 4. P. 761–770. https://doi.org/10.1111/j.1365-2656.2011.01823.x
  36. Mikheev V.N., Pasternak A.F. 2006. Defense behavior of fish against predators and parasites // J. Ichthyol. V. 46. Suppl. 2. P. S173–S179. https://doi.org/10.1134/S0032945206110063
  37. Muška M., Tušer M., Frouzová J. et al. 2013. To migrate, or not to migrate: partial diel horizontal migration of fish in a temperate freshwater reservoir // Hydrobiologia. V. 707. № 1. P. 17–28. https://doi.org/10.1007/s10750-012-1401-9
  38. Miller L.M., Kallemeyn L., Senanan W. 2001. Spawning-site and natal-site fidelity by northern pike in a large lake: mark-recapture and genetic evidence // Trans. Am. Fish. Soc. V. 130. № 2. P. 307–316. https://doi.org/10.1577/1548-8659(2001)130%3C0307:SSANSF%3E2.0.CO;2
  39. Moore J. 1995. The behaviour of parasitized animals: when an ant … is not an ant // BioScience. V. 45. № 2. P. 89–96. https://doi.org/10.2307/1312610
  40. Northcote T.G. 1978. Migratory strategies and production in freshwater fishes // Ecology of freshwater fish production. N.Y.: John Wiley and Sons. P. 326–359.
  41. Odening K., Bockhardt I. 1976. On the seasonal occurrence of Azygia lucii (Trematoda) in Esox lucius (Pisces) // Zool. Anz. V. 196. № 3/4. P. 182–188.
  42. Pavlov D.S., Mikheev V.N. 2017. Downstream migration and mechanisms of dispersal of young fish in rivers // Can. J. Fish. Aquat. Sci. V. 74. № 8. P. 1312–1323. https://doi.org/10.1139/cjfas-2016-0298
  43. Poulin R. 2010. Parasite manipulation of host behaviour: an update and frequently asked questions // Adv. Stud. Behav. V. 41. P. 151–186. https://doi.org/10.1016/S0065-3454(10)41005-0
  44. Poulin R., FitzGerald G.J. 1989. Risk of parasitism and microhabitat selection in juvenile sticklebacks // Can. J. Zool. V. 67. № 1. P. 14–18. https://doi.org/10.1139/z89-003
  45. Poulin R., de Angeli Dutra D. 2021. Animal migrations and parasitism: reciprocal effects within a unified framework // Biol. Rev. V. 96. № 4. P. 1331–1348. https://doi.org/10.1111/brv.12704
  46. Poulin R., Closs G.P., Lill A.W.T. et al. 2012. Migration as an escape from parasitism in New Zealand galaxiid fishes // Oecologia. V. 169. № 4. P. 955–963. https://doi.org/10.1007/s00442-012-2251-x
  47. Raffel T.R., Martin L.B., Rohr J.R. 2008. Parasites as predators: unifying natural enemy ecology // Trends Ecol. Evol. V. 23. № 11. P. 610–618. https://doi.org/10.1016/j.tree.2008.06.015
  48. Rosi-Marshall E.J., Wallace J.B. 2002. Invertebrate food webs along a stream resource gradient // Freshw. Biol. V. 47. № 1. P. 129–141. https://doi.org/10.1046/j.1365-2427.2002.00786.x
  49. Seppälä O., Karvonen A., Valtonen E.T. 2004. Parasite-induced change in host behaviour and susceptibility to predation in an eye fluke–fish interaction // Anim. Behav. V. 68. № 2. P. 257–263. https://doi.org/10.1016/j.anbehav.2003.10.021
  50. Skov C., Banktoft H., Brodersen J. et al. 2011. Sizing up your enemy: individual predation vulnerability predicts migratory probability // Proc. R. Soc. B. V. 278. № 1710. P. 1414–1418. https://doi.org/10.1098/rspb.2010.2035
  51. Skov C., Chapman B.B., Baktoft H. et al. 2013. Migration confers survival benefits against avian predators for partially migratory freshwater fish // Biol. Lett. V. 9. № 2. Article 20121178. https://doi.org/10.1098/rsbl.2012.1178
  52. Statzner B., Higler B. 2011. Questions and comments on the river continuum concept // Can. J. Fish. Aquat. Sci. V. 42. № 5. P. 1038–1044. https://doi.org/10.1139/f85-129
  53. Vannote R.L., Minshall G.W., Cummins K.W. et al. 1980. The river continuum concept // Ibid. V. 37. № 1. P. 130–137. https://doi.org/10.1139/f80-017
  54. Vehanen T., Hyvärinen P., Johansson K., Laaksonen T. 2006. Patterns of movement of adult northern pike (Esox lucius L.) in a regulated river // Ecol. Freshw. Fish. V. 15. № 2. P. 154–160. https://doi.org/10.1111/j.1600-0633.2006.00151.x
  55. Wille M., Klaassen M. 2022. Should I stay, should I go, or something in between? The potential for parasite-mediated and age-related differential migration strategies // Evol. Ecol. V. 37. № 1. P. 189–202. https://doi.org/10.1007/s10682-022-10190-9
  56. Zapata A., Diez B., Cejalvo T. et al. 2006. Ontogeny of the immune system of fish // Fish Shellfish Immunol. V. 20. № 2. P. 126–136. https://doi.org/10.1016/j.fsi.2004.09.005
  57. Zaret T.M., Suffern J.S. 1976. Vertical migration in zooplankton as a predator avoidance mechanism // Limnol. Oceanogr. V. 21. № 6. P. 804–813. https://doi.org/10.4319/lo.1976.21.6.0804

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences