Determination of 6-Nitro-7-(4'-Nitrophenyl)-5-Ethyl-4,7-Dihydropyrazolo[1,5-a]Pyrimidine-3-Carboxylate as a Potential Antitumor Agent by Voltammetry
- Authors: Mozharovskaia P.N.1, Ivoilova A.V.1, Terekhova A.A.1, Tsmokalyuk A.N.1, Ivanova A.V.1, Kozitsina A.N.1, Rusinov V.L.1,2
- 
							Affiliations: 
							- Ural Federal University named after the first President of Russia B.N. Yeltsin
- Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
 
- Issue: Vol 78, No 3 (2023)
- Pages: 260-267
- Section: ORIGINAL ARTICLES
- Submitted: 31.01.2025
- URL: https://jdigitaldiagnostics.com/0044-4502/article/view/650166
- DOI: https://doi.org/10.31857/S0044450223020081
- EDN: https://elibrary.ru/FUUGSE
- ID: 650166
Cite item
Abstract
6-Nitro-7-(4'-nitrophenyl)-5-ethyl-4,7-dihydropyrazolo[1,5-a]pyrimidine-3-carboxylate (1) is one of promising antitumor compounds exhibiting biological activity against type 2 casein kinase, which is currently considered as a promising target in chemotherapy. Using the method of cyclic voltammetry, it was shown that the electrochemical activity of compound 1 in a mixed solution of Tris-HCl and ethanol (1 : 1) at pH 7.5 on a glassy-carbon electrode is due to the electrochemical reduction of the nitro group conjugated with the phenyl ring. A method was developed for the determination of compound 1 by direct cathodic square-wave voltammetry. The linearity region of the corresponding calibration curve obtained in a solution of a mixture of Tris-HCl and ethanol (1 : 1) at pH 7.5 is 5–500 mg/L (R2 = 0.988), the limit of detection is 0.8 mg/L, the limit of quantification is 2.4 mg/L. The accuracy of the developed procedure is close to 100%, the relative standard deviation is 1.4%.
About the authors
P. N. Mozharovskaia
Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: pnmozharovskaia@urfu.ru
				                					                																			                												                								620002, Yekaterinburg, Russia						
A. V. Ivoilova
Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: pnmozharovskaia@urfu.ru
				                					                																			                												                								620002, Yekaterinburg, Russia						
A. A. Terekhova
Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: pnmozharovskaia@urfu.ru
				                					                																			                												                								620002, Yekaterinburg, Russia						
A. N. Tsmokalyuk
Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: pnmozharovskaia@urfu.ru
				                					                																			                												                								620002, Yekaterinburg, Russia						
A. V. Ivanova
Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: pnmozharovskaia@urfu.ru
				                					                																			                												                								620002, Yekaterinburg, Russia						
A. N. Kozitsina
Ural Federal University named after the first President of Russia B.N. Yeltsin
														Email: pnmozharovskaia@urfu.ru
				                					                																			                												                								620002, Yekaterinburg, Russia						
V. L. Rusinov
Ural Federal University named after the first President of Russia B.N. Yeltsin; Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: pnmozharovskaia@urfu.ru
				                					                																			                												                								620002, Yekaterinburg, Russia; 620137, Yekaterinburg, Russia						
References
- Pilleron S., Sarfati D., Janssen-Heijnen M., Vignat J., Ferlay J., Bray F., Soerjomataram I. Global cancer incidence in older adults, 2012 and 2035: A population-based study // Int. J. Cancer. 2019. V. 144. № 1. P. 49.
- Davatgaran-Taghipour Y., Masoomzadeh S., Farzaei M.H., Bahramsoltani R., Karimi-Soureh Z., Rahimi R., Abdollahi M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective // Int. J. Nanomed. 2017. V. 12. P. 2689.
- Abdelaziz H.M., Gaber M., Abd-Elwakil M.M., Mabrouk M.T., Elgohary M.M., Kamel N.M., Kabary D.M., Freag M.S., Samaha M.W., Mortada S.M. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates // J. Control. Release. 2018. V. 269. P. 374.
- Madamsetty V.S., Mukherjee A., Mukherjee S. Recent trends of the bio-inspired nanoparticles in cancer theranostics // Front. Pharmacol. 2019. V. 10. P. 1264.
- Fuchi Y. Murase H., Kai R., Kurata K., Karasawa S., Sasaki S. Artificial host molecules to covalently capture 8-Nitro-cGMP in neutral aqueous solutions and in cells // Bioconjug. Chem. 2021. V. 32. № 2. P. 385.
- Denny W.A., Wilson W.R., Stevenson R.J., Tercel M., Atwell G.J., Yang S. Patterson V.A. Nitrobenzindoles and their use in cancer therapy. U.S. Patent No. 7718688. 18.05.2010.
- Wardman P. Application of pulse radiolysis methods to study the reactions and structure of biomolecules // Rep. Prog. Phys. 1978. V. 21. № 2. P. 259.
- Grunberg E., Titsworth E.H. Chemotherapeutic properties of heterocyclic compounds: monocyclic compounds with five-membered rings // Ann. Rev. Microbiol. 1973. V. 27. № 21. P. 317.
- Alavi M., Nokhodchi A. Micro- and nanoformulations of paclitaxel based on micelles, liposomes, cubosomes, and lipid nanoparticles: Recent advances and challenges // Drug Discov. Today. 2022. V. 27. № 2. P. 576.
- Bhatnagar I., Kim S-K. Marine antitumor drugs: Status, shortfalls and strategies // Marine Drugs. 2010. V. 8. № 10. P. 2702.
- Pérez-Herrero E., Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy // Eur. J. Pharm. Biopharm. 2015. V. 93. P. 52.
- Asati V., Anant A., Patel P., Kaur K., Gupta G.D. Pyrazolopyrimidines as anticancer agents: A review on structural and target-based approaches // Eur. J. Med. Chem. 2021. V. 225. Article 113781.
- Pagano M.A., Cesaro L., Meggio F., Pinna L.A. Protein kinase CK2: A newcomer in the “druggable kinome” // Biochem. Soc. Trans. 2006. V. 34. № 6. P. 1303.
- Squella J.A., Bollo S., Núñez-Vergara L.J. Recent developments in the electrochemistry of some nitro compounds of biological significance // Curr. Org. Chem. 2005. V. 9. № 6. P. 565
- Малахова Н.А., Ивойлова А.В. Замана А.А., Русинов В.Л., Алямовская И.С., Иванова А.В., Козицина А.Н. Количественное определение основного вещества противовирусного препарата Триазид® с использованием метода вольтамперометрии // Журн. аналит. химии. 2020. Т. 75. № 3. С. 266.
- Bonfilio R., De Araújo B.M., Salgado H.R.N. Recent applications of analytical techniques for quantitative pharmaceutical analysis: A review // WSEAS Trans. Biol. Biomed. 2010. T. 7. № 4. P. 316.
- El-Shahawi M.S., Bahaffi S.O., El-Mogy T. Analysis of domperidone in pharmaceutical formulations and wastewater by differential pulse voltammetry at a glassy-carbon electrode // Anal. Bioanal. Chem. 2007. V. 387. № 2. P. 719.
- Zittel H.E., Miller F.J. A glassy-carbon electrode for voltammetry // Anal. Chem. 1965. V. 37. № 2. P. 200.
- Baizer M. M., Lund H. Organic Electrochemistry. New York, 1983. P. 1166.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									 
									
 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





