ULTRAFAST LATTICE AND ELECTRON DYNAMICS INDUCED IN A PbSe CRYSTAL BY AN INTENSE TERAHERTZ PULSE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ultrafast optical response of a PbSe crystal to an intense picosecond terahertz pulse with a peak electric field strength of up to ∼ 500 kV/cm is studied. The reflectivity anisotropy signal contains oscillations at the fundamental frequency of the resonant infrared-active phonon mode as well as its second, third, and fourth harmonics. The effect is ascribed to coherent anharmonic phonons resonantly excited by the strong terahertz field. Pump terahertz pulses also induce an almost instantaneous Kerr effect and a long-lived optical anisotropy of the crystal with a characteristic decay time of ≳ 100 ps. We consider lattice distortion and phonon-assisted side valley population as possible origins of this metastable state.

About the authors

A. A Melnikov

Institute for Spectroscopy, Russian Academy of Sciences

Author for correspondence.
Email: melnikov@isan.troitsk.ru
Troitsk, Moscow, Russia

Yu. G Selivanov

P. N. Lebedev Physical Institute, Russian Academy of Sciences

Email: melnikov@isan.troitsk.ru
Moscow, Russia

D. G Poydashev

Institute for Spectroscopy, Russian Academy of Sciences

Email: melnikov@isan.troitsk.ru
Troitsk, Moscow, Russia

S. V Chekalin

Institute for Spectroscopy, Russian Academy of Sciences

Email: melnikov@isan.troitsk.ru
Troitsk, Moscow, Russia

References

  1. J. He and T. M. Tritt, Advances in Thermoelectric Materials Research: Looking Back and Moving Forward, Science 357, eaak9997 (2017).
  2. J. Wei, L. Yang, Z. Ma, P. Song, M. Zhang, J. Ma, F. Yang, and X. Wang, Review of Current High-ZT Thermoelectric Materials, J. Mater. Sci. 55, 12642 (2020).
  3. Z. Hu, Y. Ding, X. Hu, W. Zhou, X. Yu, and S. Zhang, Recent Progress in 2D Group IV-IV Monochalcogenides: Synthesis, Properties and Applications, Nanotechnology 30, 252001 (2019).
  4. A. Shafique and Y.-H. Shin, Thermoelectric and Phonon Transport Properties of Two-Dimensional IV-VI Compounds, Sci. Rep. 7, 506 (2017).
  5. A. N. Filanovich and A. A. Povzner, Phonon Spectra and Lattice Thermal Conductivity of High-Performance Thermoelectric SnSe, JETP Lett. 120, 195 (2024).
  6. A. S. Starkov and I. A. Starkov, Averaging of Thermoelectric Media: Thermoelectric Potential Distribution, JETP 134, 211 (2022).
  7. O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M.-H. Du, D. J. Singh, A. Pod-lesnyak, G. Ehlers, M. D. Lumsden, and B. C. Sales, Giant Anharmonic Phonon Scattering in PbTe, Nat. Mater. 10, 614 (2011).
  8. M. P. Jiang, M. Trigo, I. Savić, S. Fahy, É. D. Murray, C. Bray, J. Clark, T. Henighan, M. Kozina, M. Chol-let, J. M. Glownia, M. C. Hoffmann, D. Zhu, O. Delaire, A. F. May, B. C. Sales, A. M. Lindenberg, P. Zalden, T. Sato, R. Merlin, and D. A. Reis, The Origin of Incipient Ferroelectricity in Lead Tel luride, Nat. Commun. 7, 12291 (2016).
  9. C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, and O. Delaire, Orbitally Driven Giant Phonon Anharmonicity in SnSe, Nat. Phys. 11, 1063 (2015).
  10. T. Lanigan-Atkins, S. Yang, J. L. Niedziela, D. Bansal, A. F. May, A. A. Puretzky, J. Y. Y. Lin, D. M. Pajerowski, T. Hong, S. Chi, G. Ehlers, and O. Delaire, Extended Anharmonic Collapse of Phonon Dispersions in SnS and SnSe, Nat. Commun. 11, 4430 (2020).
  11. J. M. Skelton, L. A. Burton, S. C. Parker, A. Walsh, C.-E. Kim, A. Soon, J. Buckeridge, A. A. Sokol, C. Richard A. Catlow, A. Togo, and I. Tanaka, Anharmonicity in the High-Temperature Cmcm Phase of SnSe: Soft Modes and Three-Phonon Interactions, Phys. Rev. Lett. 117, 075502 (2016).
  12. S. A. J. Kimber, J. Zhang, C. H. Liang, G. G. Guzman-Verri, P. B. Littlewood, Y. Cheng, D. L. Abernathy, J. M. Hudspeth, Z.-Z. Luo, M. G. Kanatzidis, T. Chatterji, A. J. Ramirez-Cuesta, and S. J. L. Bil-linge, Dynamic Crystallography Reveals Spontaneous Anisotropy in Cubic GeTe, Nat. Mater. 22, 311 (2023).
  13. U. V. Waghmare, N. A. Spaldin, H. C. Kandpal, and R. Seshadri, First-Principles Indicators of Metal lic-ity and Cation Off-Centricity in the IV-VI Rocksalt Chalcogenides of Divalent Ge, Sn, and Pb, Phys. Rev. B 67, 125111 (2003).
  14. A. Walsh and G. W. Watson, The Origin of the Stereochemical ly Active Pb(II) Lone Pair: DFT Calculations on PbO and PbS, J. Solid State Chem. 178, 1422 (2005).
  15. M. D. Nielsen, V. Ozolins, and J. P. Heremans, Lone Pair Electrons Minimize Lattice Thermal Conductivity, Energy Environ. Sci. 6, 570 (2013).
  16. B. Sangiorgio, E. S. Božin, C. D. Malliakas, M. Fechner, A. Simonov, M. G. Kanatzidis, S. J. L. Billinge, N. A. Spaldin, and T. Weber, Correlated Local Dipoles in PbTe, Phys. Rev. Materials 2, 085402 (2018).
  17. E. S. Božin, C. D. Malliakas, P. Souvatzis, T. Proffen, N. A. Spaldin, M. G. Kanatzidis, and S. J. L. Bil-linge, Entropical ly Stabilized Local Dipole Formation in Lead Chalcogenides, Science 330, 1660 (2010).
  18. K. M. Ø. Jensen, E. S. Božin, C. D. Malliakas, M. B. Stone, M. D. Lumsden, M. G. Kanatzidis, S. M. Shapiro, and S. J. L. Billinge, Lattice Dynamics Reveals a Local Symmetry Breaking in the Emergent Dipole Phase of PbTe, Phys. Rev. B 86, 085313 (2012).
  19. M. Iizumi, Y. Hamaguchi, K. F. Komatsubara, and Y. Kato, Phase Transition in SnTe With Low Carrier Concentration, J. Phys. Soc. Jpn. 38, 443 (1975).
  20. C. Wang, J. Wu, Z. Zeng, J. Embs, Y. Pei, J. Ma, and Y. Chen, Soft-Mode Dynamics in the Ferroelectric Phase Transition of GeTe, npj Comput. Mater. 7, 118 (2021).
  21. Y. Huang, S. Teitelbaum, S. Yang, G. De la Pe na, T. Sato, M. Chollet, D. Zhu, J. L. Niedziela, D. Bansal, A. F. May, A. M. Lindenberg, O. Delaire, M. Trigo, and D. A. Reis, Nonthermal Bonding Origin of a Novel Photoexcited Lattice Instability in SnSe, Phys. Rev. Lett. 131, 156902 (2023).
  22. J. Shi, W. You, X. Li, F. Y. Gao, X. Peng, S. Zhang, J. Li, Y. Zhang, L. Fu, P. J. Taylor, K. A. Nelson, and E. Baldini, Revealing a Distortive Polar Order Buried in the Fermi Sea, Sci. Adv. 10, eadn0929 (2024).
  23. J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, Laser-Driven Strong-Field Terahertz Sources, Adv. Optical Mater. 8, 1900681 (2020).
  24. B. V. Rumiantsev, A. V. Pushkin, D. Z. Suleimanova, N. A. Zhidovtsev, and F. V. Potemkin, Generation of Intense Few-Cycle Terahertz Radiation in Organic Crystals Pumped by 1.24-µm Multigigawatt Chirped Laser Pulses, JETP Lett. 117, 566 (2023).
  25. T. Kampfrath, K. Tanaka, and K. A. Nelson, Resonant and Nonresonant Control Over Matter and Light by Intense Terahertz Transients, Nat. Photonics 7, 680 (2013).
  26. D. Nicoletti and A. Cavalleri, Nonlinear Light-Matter Interaction at Terahertz Frequencies, Adv. Opt. Photonics 8, 401 (2016).
  27. D. N. Basov, R. D. Averitt and D. Hsieh, Towards Properties on Demand in Quantum Materials, Nat. Materials 16, 1077 (2017).
  28. H. Hübener, U. De Giovannini, and A. Rubio, Phonon Driven Floquet Matter, Nano Lett. 18, 1535 (2018).
  29. I. Gierz, M. Mitrano, H. Bromberger, C. Cacho, R. Chapman, E. Springate, S. Link, U. Starke, B. Sachs, M. Eckstein, T. O. Wehling, M. I. Katsnelson, A. Lichtenstein, and A. Cavalleri, PhononPump Extreme-Ultraviolet-Photoemission Probe in Graphene: Anomalous Heating of Dirac Carriers by Lattice Deformation, Phys. Rev. Lett. 114, 125503 (2015).
  30. D. M. Kennes, E. Y. Wilner, D. R. Reichman, and A. J. Millis, Transient Superconductivity From Electronic Squeezing of Optically Pumped Phonons, Nat. Phys. 13, 479 (2017).
  31. M. A. Sentef, Light-Enhanced Electron-Phonon Coupling From Nonlinear Electron-Phonon Coupling, Phys. Rev. B 95, 205111 (2017).
  32. M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Ricco, S. R. Clark, D. Jaksch, and A. Cavalleri, Possible Light-Induced Superconductivity in K3 C60 at High Temperature, Nature 530, 461 (2016).
  33. M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, Control of the Electronic Phase of a Manganite by Mode-Selective Vibrational Excitation, Nature 449, 72 (2007).
  34. V. Esposito, M. Fechner, R. Mankowsky, H. Lemke, M. Chollet, J. M. Glownia, M. Nakamura, M. Kawasaki, Y. Tokura, U. Staub, P. Beaud, and M. Först, Nonlinear Electron-Phonon Coupling in Doped Manganites, Phys. Rev. Lett. 118, 247601 (2017).
  35. M. Först, C. Manzoni, S. Kaiser, Y. Tomioka, Y. Tokura, R. Merlin, and A. Cavalleri, Nonlinear Phonon-ics as an Ultrafast Route to Lattice Control, Nat. Phys. 7, 854 (2011).
  36. A. Subedi, Proposal for Ultrafast Switching of Ferroelectrics Using Midinfrared Pulses, Phys. Rev. B 92, 214303 (2015).
  37. D. M. Juraschek, M. Fechner, and N. A. Spaldin, Ultrafast Structure Switching Through Nonlinear Phononics, Phys. Rev. Lett. 118, 054101 (2017).
  38. A. von Hoegen, R. Mankowsky, M. Fechner, M. Först, and A. Cavalleri, Probing the Interatomic Potential of Solids With Strong-Field Nonlinear Phononics, Nature 555, 79 (2018).
  39. M. Fechner, A. Sukhov, L. Chotorlishvili, C. Kenel, J. Berakdar, and N. A. Spaldin, Magnetophononics: Ultrafast Spin Control Through the Lattice, Phys. Rev. Materials 2, 064401 (2018).
  40. X. Li, T. Qiu, J. Zhang, E. Baldini, J. Lu, A. M. Rappe, and K. A. Nelson, Terahertz Field-Induced Ferroelectricity in Quantum Paraelectric SrTiO3 , Science 364, 1079 (2019).
  41. T. F. Nova, A. S. Disa, M. Fechner, and A. Cavalleri, Metastable Ferroelectricity in Optical ly Strained SrTiO3, Science 364, 1075 (2019).
  42. A. A. Melnikov, Yu. G. Selivanov, and S. V. Chekalin, Phonon-Driven Ultrafast Symmetry Lowering in a Bi2Se3 Crystal, Phys. Rev. B 102, 224301 (2020).
  43. A. A. Melnikov, K. N. Boldyrev, Yu. G. Selivanov, and S. V. Chekalin, Anomalous Behavior of the Infrared-Active Phonon Mode in Bi2-xSrxSe3 Crystal, JETP Lett. 115, 34 (2022).
  44. A. A. Melnikov, Yu. G. Selivanov, and S. V. Chekalin, Anharmonic Coherent Dynamics of the Soft Phonon Mode of a PbTe Crystal, Phys. Rev. B 108, 224309 (2023).
  45. Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, Phonon Conduction in PbSe, PbTe, and PbTe1-xSex From First-Principles Calculations, Phys. Rev. B 85, 184303 (2012).
  46. A. G. Stepanov, J. Hebling, and J. Kuhl, Efficient Generation of Subpicosecond Terahertz Radiation by Phase-Matched Optical Rectification Using Ultrashort Laser Pulses With Tilted Pulse Fronts, Appl. Phys. Lett. 83, 3000 (2003).
  47. H. Burkhard, G. Bauer, and A. Lopez-Otero, Submillimeter Spectroscopy of TO-Phonon Mode Softening in PbTe, J. Opt. Soc. Am. 67, 943 (1977).
  48. W. Cochran, R. A. Cowley, G. Dolling, and M. M. Elcombe, The Crystal Dynamics of Lead Tel luride, Proc. R. Soc. Lond. A 293, 433 (1966).
  49. H. A. Alperin, S. J. Pickart, J. J. Rhyne, and V. J. Minkiewicz, Softening of the Transverse-Optic Mode in PbTe, Phys. Lett. A 40, 295 (1972).
  50. Lead Selenide (PbSe) Phonon Frequencies, Sound Velocities, in Landolt-Börnstein – Group III Condensed Matter 41C (Non-Tetrahedrally Bonded Elements and Binary Compounds I), ed. by O. Madelung, U. Rössler, and M. Schulz Springer-Verlag, Berlin– Heidelberg (1998).
  51. J. Chen and W. Z. Shen, Raman Study of Phonon Modes and Disorder Effects in Pb1-X Srx Se Alloys Grown by Molecular Beam Epitaxy, J. Appl. Phys. 99, 013513 (2006).
  52. H. Maier, D. R. Daniel, and H. Preier, Sublimation Growth of PbSe Crystals With Controlled Carrier Concentration, J. Cryst. Growth 35, 121 (1976).
  53. A. Szczerbakow and K. Durose, Self-Selecting Vapour Growth of Bulk Crystals — Principles and Applicability, Progr. Cryst. Growth Mater. 51, 81 (2005).
  54. D. Ma, Y. Xiong, and J. C. W. Song, Skew-Scattering Pockels Effect and Metal lic Electro-Optics in Gapped Bilayer Graphene, arXiv:2407.12096v1.
  55. L. A. Almasov and I. M. Dykman, High-Frequency Conductivity of Hot Carriers in Semiconductors With Non-Parabolic Dispersion Law of Energy, Phys. Status Solidi B 48, 563 (1971).
  56. T. Dekorsy, G. C. Cho, and H. Kurz, Coherent Phonons in Condensed Media, in Light Scattering in Solids VIII, ed. by M. Cardona and G. Guntherodt, Springer, Berlin (2000), Chap. 4, p. 169.
  57. O. V. Misochko, Coherent Phonons and Their Properties, JETP 92, 246 (2001).
  58. S. Maehrlein, A. Paarmann, M. Wolf, and T. Kampfrath, Terahertz Sum-Frequency Excitation of a Raman-Active Phonon, Phys. Rev. Lett. 119, 127402 (2017).
  59. D. M. Juraschek and S. F. Maehrlein, Sum-Frequency Ionic Raman Scattering, Phys. Rev. B 97, 174302 (2018).
  60. A. A. Melnikov, K. N. Boldyrev, Yu. G. Selivanov, V. P. Martovitskii, S. V. Chekalin, and E. A. Ryabov, Coherent Phonons in a Bi2 Se3 Film Generated by an Intense Single-Cycle THz Pulse, Phys. Rev. B 97, 214304 (2018).
  61. M. Born and M. Bradburn, The Theory of the Raman Effect in Crystals, in Particular Rock-Salt, Proc. R. Soc. A 188, 161 (1947).
  62. J. R. Ferraro, Factor Group Analysis for Some Common Minerals, Appl. Spectrosc. 29, 418 (1975).
  63. F. Herman, R. L. Kortum, I. B. Ortenburger, and J. P. Van Dyke, Relativistic Band Structure of GeTe, SnTe, PbTe, PbSe, and PbS, J. Phys. Colloques 29, C4-62 (1968).
  64. J. Xin, Y. Tang, Y. Liu, X. Zhao, H. Pan, and T. Zhu, Val leytronics in Thermoelectric Materials, npj Quant. Mater. 3, 9 (2018).
  65. R. D’Souza, J. Cao, J. D. Querales-Flores, S. Fahy, and I. Savić, Electron-Phonon Scattering and Thermoelectric Transport in p-Type PbTe From First Principles, Phys. Rev. B 102, 115204 (2020).
  66. Y. Zhu, D. Wang, T. Hong, L. Hu, T. Ina, S. Zhan, B. Qin, H. Shi, L. Su, X. Gao, and L.-D. Zhao, Multiple Valence Bands Convergence and Strong Phonon Scattering Lead to High Thermoelectric Performance in p-Type PbSe, Nat. Commun. 13, 4179 (2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences