ON THE THEORY OF CARBONITRIDE NUCLEATION KINETICS IN MICROALLOYED AUSTENITE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

On the base of the critical analysis of existing models of strain induced precipitation of carbonitrides in austenite of microalloyed steels, a new kinetic model is developed. The driving chemical force for nucleation of carbonitrides can be calculated within the framework of Hillert and Staffansson’s regular solution theory, which treats carbonitrides as a binary mixture of carbides and nitrides, allowing further analysis of the nucleation kinetics using the formalism of Reiss’ binary nucleation theory. The nucleation rate calculated using this approach can differ significantly from the predictions of earlier models that used classical nucleation theory for singlecomponent (unary) systems.

About the authors

M. S. Veshchunov

Nuclear Safety Institute (IBRAE), Russian Academy of Sciences

Author for correspondence.
Email: msvesh@gmail.com
Moscow, Russian Federation

References

  1. I. Tamura, H. Sekine, and T. Tanaka, Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth-Heinemann, Oxford, Boston (2013).
  2. T. Gladman, The Physical Metallurgy of Microalloyed Steels, Maney for the Institute of Materials, London (1997).
  3. T. Gladman, Grain Size Control, Maney Publishing, London (2020).
  4. A. Le Bon, J. Rofes-Vernis, and C. Rossard, Recrystallization and Precipitation During Hot Working of a Nb-Bearing HSLA Steel, Metal Science 9, 36 (1975).
  5. R. Simoneau, G. Bégin, and A. H. Marquis, Progress of Nbcn Precipitation in HSLA Steels as Determined by Electrical Resistivity Measurements, Metal Science 12, 381 (1978).
  6. J. G. Jung, J. S. Park, J. Kim, and Y. K. Lee, Carbide Precipitation Kinetics in Austenite of a Nb–Ti–V Microalloyed Steel, Materials Science and Engineering 528, 5529 (2011).
  7. B. Dutta, and C. M. Sellars, Effect of Composition and Process Variables on Nb(C,N) Precipitation in Niobium Microalloyed Austenite, Materials Science and Technology 3, 197 (1987).
  8. B. Dutta, E. Valdes, and C. M. Sellars, Mechanism and Kinetics of Strain Induced Precipitation of Nb(C,N) In Austenite, Acta Metallurgica et Materialia 40, 653 (1992).
  9. W. J. Liu and J. J. Jonas, Nucleation Kinetics of Ti Carbonitride in Microalloyed Austenite, Metallurgical Transactions A 20, 689 (1989).
  10. P. Maugis and M. Gouné, Kinetics of Vanadium Carbonitride Precipitation in Steel: A Computer Model, Acta Materialia, 53, 3359 (2005).
  11. H. Zou and J. S. Kirkaldy, Carbonitride Precipitate Growth in Titanium/Niobium Microalloyed Steels, Metallurgical Transactions A 22, 1511 (1991).
  12. M. Hillert and L. I. Staffansson, Regular-Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand. 24, 3618 (1970).
  13. H. Reiss, The Kinetics of Phase Transitions in Binary Systems, J. Chem. Phys. 18, 840 (1950).
  14. G. L. Dunlop and P. J. Turner, Atom-Probe Field-Ion Microscopy of Mixed Vanadium–Titanium Carbides in a Low-Alloy Steel, Metal Science 9, 370 (1975).
  15. J. S. Langer, Statistical Theory of the Decay of Metastable States, Ann. Phys. 54, 258 (1969).
  16. M. Temkin, Mixtures of Fused Salts as Ionic Solutions, Acta Phys. Chem. USSR 20, 411 (1945).
  17. T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura, and T. Maki, Multiphase Crystallography in the Nucleation of Intragranular Ferrite on MnS+V(C,N) Complex Precipitate in Austenite, ISIJ International 43, 2028 (2003).
  18. Y. Yazawa, T. Furuhara, and T. Maki, Effect of Matrix Recrystallization on Morphology, Crystallography and Coarsening Behavior of Vanadium Carbide in Austenite, Acta Materialia 52, 3727 (2004).
  19. D. Poddar, P. Cizek, H. Beladi, and P. D. Hodgson, Evolution of Strain-Induced Precipitates in a Model Austenitic Fe–30Ni–Nb Steel and their Effect on the Flow Behaviour, Acta Materialia 80, 1 (2014).
  20. T. N. Baker, Microalloyed Steels, in: Future Developments of Metals and Ceramics, ed. by J. A. Charles, G. W. Greenwood, and G. C. Smith, London, Institute of Materials, p. 75 (1992).
  21. T. N. Baker, Microalloyed Steels, Ironmaking and Steelmaking 43, 264 (2016).
  22. R. E. Smallman, and A. H. W. Ngan, Physical Metallurgy and Advanced Materials, 7th ed., Elsevier (2007).
  23. J.W. Christian, The Theory of Transformations in Metals and Alloys, Pergamon, Oxford, Chapter 52 (1975).
  24. C. C. Dollins, Nucleation on Dislocations, Acta Metallurgica 18, 1209 (1970).
  25. D. M. Barnett, On Nucleation of Coherent Precipitates near Edge Dislocations, Scripta Metallurgica 5, 261 (1971).
  26. P. Grieveson, An Investigation of the Ti-CN System, Proc. Br. Ceram. Soc. 8, 137 (1967).
  27. W. Roberts and A. Sandberg, Swedish Institute for Metals Research Report No. IM-1489, Stockholm (1980).
  28. J. G. Speer, J. R. Michael, and S. S. Hansen, Carbonitride Precipitation in Niobium/Vanadium Microalloyed Steels, Metallurgical and Materials Transactions A 18, 211 (1987).
  29. J. G. Speer, S. Mehta, and S. S. Hansen, Composition of Vanadium Carbonitride Precipitates in Microalloyed Austenite, Scr. Metall. 18, 1241 (1984).
  30. M. Volmer and A. Weber, Keimbildung in übersättigten Gebilden, Z. Phys. Chem. 119, 277 (1926).
  31. R. Becker and W. Doering, Kinetische Behandlung der Keimbildung in übersättigten Dämpfen, Ann. Phys. 24, 719 (1935).
  32. Ja. B. Zeldovich, On the Theory of New Phase Formation: Cavitation, Acta Physicochim. URSS 18, 1 (1943).
  33. D. Stauffer, Kinetic Theory of Two-Component (Hetero-Molecular) Nucleation and Condensation, J. Aerosol Sci. 7, 319 (1976).
  34. L. M. Berezhkovskii and V. Yu. Zitserman, Direction of the Nucleation Current through the Saddle Point in the Binary Nucleation Theory and the Saddle Point Avoidance, J. Chem. Phys. 102, 3331 (1995).
  35. J. Frenkel, Kinetic Theory of Liquids, Dover Publication, New York (1955).
  36. J. Lothe and G. M. Pound, Reconsiderations of Nucleation Theory, J. Chem. Phys. 36, 2080 (1962).
  37. D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth Heinemann, Oxford, Boston (2000).
  38. H. Reiss and J. L. Katz, Resolution of the Translation — Rotation Paradox in the Theory of Irreversible Condensation, J. Chem. Phys. 46, 2496 (1967).
  39. J. L. Katz and H. Wiedersich, Nucleation of Voids in Materials Supersaturated with Vacancies and Interstitials, J. Chem. Phys. 55, 1414 (1971).
  40. J. L. Katz, Homogeneous Nucleation Theory and Experiment: A Survey, Pure. Appl. Chem 64, 1661 (1992).
  41. M. S. Veshchunov, On the Theory of Void Nucleation in Irradiated Crystals, J. Nucl. Mater. 571, 154021 (2022).
  42. H. Reiss, W. K. Kegel, and J. L. Katz, Resolution of the Problems of Replacement Free Energy, 1/s, and Internal Consistency in Nucleation Theory by Consideration of the Length Scale for Mixing Entropy, Phys. Rev. Lett. 78, 4506 (1997).
  43. M. S. Veshchunov, Development of the Reiss Theory for Binary Homogeneous Nucleation of Aerosols, Aerosol Sci. Technol. 58, 1 (2023).
  44. A. W. Adamson, Textbook of Physical Chemistry, Academic Press (1973).
  45. S. Okaguchi and T. Hashimoto, Computer Model for Prediction of Carbonitride Precipitation during Hot Working in Nb-Ti Bearing HSLA Steels, ISIJ International 32, 283 (1992).
  46. L. D. Landau and E. M. Lifshitz, Theoretical Physics, Vol. 5: Statistical Physics, Pergamon Press, Chapter 87 (1980).
  47. M. H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, and C. H. De Novion, Experimental Study and Modelling of Copper Precipitation under Electron Irradiation in Dilute FeCu Binary Alloys, J. Nucl. Mater. 245, 224 (1997).
  48. N. Korepanova, L. Gu, M. Dima, and H. Xu, Cluster Dynamics Modeling of Niobium and Titanium Carbide Precipitates in _-Fe And -Fe, Chinese Physics B 31, 026103 (2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences