Bulk properties of the water-urea-choline chloride system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The available experimental data on the solution densities of two binary subsystems, viz. water — choline chloride and urea — choline chloride, and the ternary water — urea — choline chloride system are analyzed. The parameters of the Pitzer-Simonson-Clegg bulk model describing the experimental values of molar volumes of solutions of both binary subsystems and ternary system one function Vm = f(T, p, x1, x2) in the temperature range from 278.15 to 363.15 K and the pressure range from 0.1 to 50 MPa are determined. In the course of thermodynamic modeling, the dependence of the molar volume of choline chloride melt on the state parameters (p, T) is proposed. The obtained model parameters describing binary interactions in the water — choline chloride and urea — choline chloride subsystems can be used to model bulk properties of solvents with deep eutectic of different component composition.

Full Text

Restricted Access

About the authors

D. A. Kalinyuk

M. V. Lomonosov Moscow State University

Author for correspondence.
Email: kalinyukda@my.msu.ru
ORCID iD: 0000-0002-7758-9445

Department of Chemistry

Russian Federation, Moscow, 119991

E. A. Selezeneva

Mari State University

Email: kalinyukda@my.msu.ru
Russian Federation, Yoshkar-Ola, 424001

D. I. Yumakov

Mari State University

Email: kalinyukda@my.msu.ru
Russian Federation, Yoshkar-Ola, 424001

G. N. Kosova

Mari State University; Volga State University of Technology

Email: kalinyukda@my.msu.ru
Russian Federation, Yoshkar-Ola, 424001; Yoshkar-Ola, 424000

References

  1. Smith E.L., Abbott A.P., Ryder K.S. // Chem. Rev. 2014. V. 114. № 21. Р. 11060.
  2. Shahbaz K., Mjalli F.S., Gholamreza V.-N. et al. // J. Mol. Liq. 2016. V. 222. Р. 61.
  3. Chen W. Xue Zh., Wang J. et al. // Acta Phys. Chim. Sin. 2018. V. 34 № 8. Р. 904.
  4. Delgado-Mellado N., Larriba M., Navarro P. et al. // J. Mol. Liq. 2018. V. 260. Р. 37.
  5. Hansen B.B., Spittle St., Chen B. et al. // Chem. Rev. 2020. V. 121. № 3. Р. 1232.
  6. Wen Q., Chen J.-X., Tang Yu-L. et al. // Chemosphere. 2015. V. 132. Р. 63.
  7. El Achkar T., Greige-Gerges H., Fourmentin S. // Environ. Chem. Lett. 2021. V. 19. Р. 3397.
  8. Abbott A.P., Capper G., Davies D.L. et al. // J. Chem. Eng. Data. 2006. V. 51 № 4. Р. 1280.
  9. Abbott A.P., Capper G., Davies D.L. et al. // Chem. Commun. 2003. V. 1. Р. 70.
  10. Isaifan R.J., Amhamed A. // Adv. Chem. 2018. V. 2018 № 1. Р. 2675659.
  11. Frauenkron M., Melder J.-P., Ruider G. et al. // J. Environ. Prot. Ecol. 2012. V. 413. Р. 406.
  12. Mangiacapre E., Castiglione F., Aristotile M.D. et al. // J. Mol. Liq. 2023. V. 383. Р. 22120.
  13. Shaukat S., Buchner R. // J. Chem. Eng. Data. 2011. V. 56. № 12. Р. 4944.
  14. Agieienko V., Buchner R. // Ibid. 2019. V. 64. № 11. Р. 4763.
  15. Gilmore M., Swadzba-Kwasny M., Holbrey J.D. // J. Chem. Eng. Data. 2019. V. 64. № 12. Р. 5248.
  16. Leron R.B., Li M.H. // J. Chem. Thermodyn. 2012. V. 54. Р. 293.
  17. Shah D., Mjalli F.S. // Phys. Chem. Chem. Phys. 2014. V. 16. № 43. Р. 23900.
  18. Shekaari H., Zafarani-Moattar M. T., Mohammadi B. // J. Mol. Liq. 2017. V. 243. Р. 451.
  19. Xie Y., Dong H., Zhang S. et al. // J. Chem. Eng. Data. 2014. V. 59. № 11. Р. 3344.
  20. Yadav A., Pandey S. // J. Chem. Eng. Data. 2014. V. 59. № 7. Р. 2221.
  21. Zhekenov T., Toksanbayev N., Kazakbayeva Z. et al. // Fluid Phase Equilib. 2017. V. 441. Р. 43.
  22. Su W.C., Wong D.S. H., Li M.H. // J. Chem. Eng. Data. 2009. V. 54. № 6. Р. 1951.
  23. Haghbakhsh R., Raeissi S. // J. Chem. Thermodyn. 2018. V. 124. Р. 10.
  24. Dhingra D., Bhawna B., Pandey S. // J. Chem. Thermodyn. 2019. V. 130. Р. 166.
  25. Chemat F., Anjum H., Shariff A.M. et al. // J. Mol. Liq. 2016. V. 218. Р. 301.
  26. Mjalli F.S., Jabbar N.M. A. // Fluid Phase Equilib. 2014. V. 381. Р. 71.
  27. Kosova D.A., Voskov A.L., Uspenskaya I.A. // J. Solution Chem. 2016. V. 45. Р. 1182.
  28. Wagner W., Pruß A. // J. Phys. Chem. Ref. Data. 2002. V. 31. № 2. Р. 387.
  29. Voskov A.L., Kovalenko N.A. // Fluid Phase Equilib. 2020. V. 507. Р. 112419.
  30. Senko M.E., Templeton D.H. // Acta Crystallogr. 1960. V. 13. № 4. Р. 281.
  31. Tischer S., Börnhorst M., Amsler J. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 30. Р. 16785. 10.1039/C9CP01529A
  32. Dana A.G., Shter G.E., Grader G.S. // RSC Adv. 2014. V. 4. № 66.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Gibbs-Rosebohm triangle of the water-urea-choline chloride (ChCh) system. Symbols are compositions for which solution densities have been measured experimentally in the temperature range from 278.15 to 363.15 K and pressure range from 0.1 to 50 MPa.

Download (107KB)
3. Fig. 2. Excess molar volume (Vex) of the water – choline chloride system calculated using the PSC model (2); xChCh is the molar fraction of choline chloride.

Download (138KB)
4. Fig. 3. Relative deviations (δ) of experimentally determined molar volumes of solutions (symbols) of the water – choline chloride system [12, 13] from those calculated according to (2); xChCh is the molar fraction of choline chloride; dotted lines are the average value of the relative deviation (0.3%).

Download (178KB)
5. Fig. 4. Relative deviations (δ) of experimentally determined molar volumes of a solution of the eutectic composition of the urea - choline chloride system (symbols) [14-21, 23-26] from those calculated according to (2); T is the temperature; dashed lines are the average value of the relative deviation (0.2%). The data from [17] (●), [21] (Δ) and [26] (◊) were excluded from the approximation.

Download (133KB)
6. Fig. 5. Densities (d) of the water – urea – choline chloride system at T = 303.15 K and p = 0.1 MPa, obtained for solutions with a molar ratio of urea to choline chloride of 2:1: symbols are experimental data, line is the values ​​calculated according to (2). Data from [17] (○) and [21] (□, composition with xreline = 1) were excluded from the approximation. xreline is the molar fraction of 2(NH2)2CO: ChCh.

Download (125KB)
7. Fig. 6. Average values ​​of relative deviations (δ) of experimentally determined molar volumes of solutions of the water-urea-choline chloride system from those calculated according to (2) depending on the external pressure (p): dark gray — [16], light gray — average values ​​according to data from [14, 16, 18–21]. The dotted line is the average value of the relative deviation for all experimental data included in the approximation (0.7%).

Download (125KB)
8. Fig. 7. Average values ​​of relative deviations (δ) of experimentally determined molar volumes of solutions of the water-urea-choline chloride system from those calculated according to (2) depending on temperature (T). The dotted line is the average value of the relative deviation for all experimental data included in the approximation (0.7%) [14, 16, 18–21].

Download (147KB)

Copyright (c) 2025 Russian Academy of Sciences