Studying electromagnetic radiation shielding and absorbing properties of shungite-containing substances

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fine-dispersed shungite as an effective filler of composite materials is studied. Experimental data on the influence of the filler concentration of the composite material on its electromagnetic radiation absorbing and shielding characteristics in the radio and microwave ranges are obtained. The obtained data can be used for manufacturing effective radio-absorbing materials and electromagnetic shields for protection against undesired effects of electromagnetic radiation, information protection, in radio engineering, as well as in warfare.

Full Text

Restricted Access

About the authors

Yu. V. Samukhina

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: juliesam2008@mail.ru
Russian Federation, Moscow, 119071

A. K. Buryak

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: juliesam2008@mail.ru
Russian Federation, Moscow, 119071

References

  1. Кукина О.Б. // Научный вестник Воронежского ГАСУ. Сер.: Физико-химические проблемы и высокие технологии строительного материаловедения. 2014. Вып. 2. № 9. С. 53.
  2. Золотухин С.Н. // Научный вестник Воронежского ГАСУ. Сер.: Высокие технологии. Экология. 2016. № 1. С. 115.
  3. Golubev Y.A., Antonets I.V., Shcheglov V.I. // Materials Chemistry and Physics. 2019. V. 226. Р. 195.
  4. Antonets I.V., Golubev Y.A., Shcheglov V.I., Sun S. // Current Applied Physics. 2021. V. 29. P. 97.
  5. Emelyanov S., Kuzmenko A., Rodionov V., Dobromyslov M. // J. of Nanoand Electronic Physics. 2013. V. 5. № 4. P. 40233.
  6. Galautdinov A., Mukhametrakhimov R., Kupriyanov V. // Lecture Notes in Civil Engineering. 2021. Р. 372.
  7. Abdimuratov Zh.S., Manbetova Zh.D., Imankul M.N. et al. // Series of Geology and Technical Sciences. 2021. V. 445. № 1. P. 6.
  8. Samukhina Yu.V., Nikoladze G.M., Kulkova T.A., Buryak A.K. // Russian J.of Physical Chemistry A. V. 97. № 2. P. 373.
  9. Антонец И.В., Голубев Е.А., Шавров В.Г., Щеглов В.И. // Журн. радиоэлектроники. 2017. № 9. С. 7.
  10. Wells D., Egan J.A., Murphy D.G., Paret T. // Special Paper of the Geological Society of America. 2014. № 509. P. 199.
  11. Fujita T., Aoki T., Ponou J. et al. // Minerals. 2021. V. 11. № 3. P. 245.
  12. Chung D.D.L. // Carbon. 2001. V. 39. P. 279.
  13. Buz’ko V., Shamray I., Goryachko A. et al. // E3S Web of Conferences. 2021. V. 263. P. 01013.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Measuring setup based on the “NanoVNA V2” vector analyzer connected to a personal computer and a coaxial matched loaded waveguide.

Download (285KB)
3. Fig. 2. Block diagram of the measuring setup.

Download (179KB)
4. Fig. 3. Dependences of the reflection (a), transmission (b), absorption (c) and effective absorption (d) coefficients on the EMI frequency for various composite samples: pure paraffin (1); shungite 10 (2), 30 (3) and 50% (4).

Download (479KB)

Copyright (c) 2025 Russian Academy of Sciences