The determining role of heterogeneous reactions of atoms and radicals in flame propagation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The dependence of flame propagation characteristics on heterogeneous reactions of atoms and radicals at atmospheric pressure is established. It is noted that along with participation in the breakage of reaction chains, adsorbed hydrogen atoms carry out heterogeneous development of chains as they react with O2 to form HO2 radicals registered by the laser magnetic resonance method. In the flame, HO2 radicals with H atoms form OH radicals, and thus heterogeneous development of chains takes place. The flame changes the chemical properties of the surface. It is concluded that the identified mechanism and equations derived from it quantitatively describe the observed patterns.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Azatyan

Institute for System Development, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: vylenazatyan@yandex.ru
Ресей, Moscow

V. Prokopenko

A. G. Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: vprok48@mail.ru
Ресей, Chernogolovka

N. Smirnov

Institute for System Development, Russian Academy of Sciences

Email: vprok48@mail.ru
Ресей, Moscow

S. Abramov

A. G. Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Email: vprok48@mail.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. Льюис Б., Эльбе Г. Горение, взрывы и пламя в газах. М.: Мир, 1968. 604 с.
  2. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987. 491 с.
  3. Lewis В., Von Elbe G. Combustion, explosions and flame in gases. N.Y.-L.: Acad. Press, 1987. 592 p.
  4. Williams F.A. Combustion Thery. Princeton University. 1985. 680 p.
  5. Low C.K. Combustion Physics. Princeton Cambridge University Press. 2006. 722 p.
  6. Зельдович Я.Б., Баренблат Г.И., Либрович В.Б., Махвиладзе Г.М. Математическая теория горения и взрыва. 1980. М.: Наука, 478 с.
  7. Химическая энциклопедия. М.: Сов. энциклопедия, 1988. Т. 1. С. 1164.
  8. Азатян В.В. // Кинетика и катализ. 1996. Т. 37. № 4. С. 512.
  9. Азатян В.В. // Успехи химии. 1999. Т. 68. № 12. С. 1122.
  10. Смирнов Н.Н., Никитин В.Ф., Михальченко Е.В., Стамов Л.И. // Физика горения и взрыва. 2022. Т. 58. № 5. С. 561.
  11. Азатян В.В., Прокопенко В.М., Абрамов С.К. // Журн. физ. химии. 2019. Т. 93. № 4. C. 622.
  12. Азатян В.В., Пилоян А.А., Баймуратова Г.Р., Масалова В.В. // Кинетика и катализ. 2008. Т. 49. № 2. С. 190.
  13. Ландау Л.Д., Ахиезер А.И., Лифшиц Е.М. Общий курс физики. Механика и молекулярная физика. М.: Наука, 2011. 384 с.
  14. Азатян В.В., Прокопенко В.М., Сон Э.Е., Абрамов С.К. // Теплофизика высоких температур. 2023. Т. 61. № 1. С. 1.
  15. Азатян В.В. // Докл. РАН. 2020. Т. 495. С. 59.
  16. Baulch D.L., Bowman C.T., Cobos C.J. et al. // J. of Phys. and Chem. Reference Data. 2005. V. 34. № 3. P. 757.
  17. Азатян В.В. Новые закономерности разветвленно-цепных процессов. Дис. … д-ра хим. наук. 1978. М.: ИХФ АН СССР.
  18. Азатян В.В., Кислюк М.У., Крылов О.В., Шавард А.А. // Кинетика и катализ. 1980. Т. 21. № 3. С. 583.
  19. Семенов Н.Н. Избранные произведения. Т. 3. М.: Наука, 2004.
  20. Шавард А.А. Роль гомогенных и гетерогенных нелинейных реакций в горении водорода. Дис. … канд. хим. наук. 1981. М.: ИХФ РАН.
  21. Азатян В.В., Семенов Н.Н. // Кинетика и катализ. 1972. Т. 13. № 1. С. 17.
  22. Азатян В.В., Гаганидзе К.Н., Колесников С.А., Ожерельев Б.В. // Кинетика и катализ. 1982. Т. 23. № 1. С. 244.
  23. Азатян В.В., Рубцов Н.М., Черныш В.И., Цветков Г.И. // Кинетика и катализ. 2006. Т. 47. № 3. С. 333.
  24. Азатян В.В., Вагнер Г.Г. // Кинетика и катализ. 1997. Т. 39. № 2. С. 165.
  25. Азатян В.В., Прокопенко В.М., Абрамов С.К. // Журн. физ. химии. 2024. Т. 98. № 3.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Reactor diagram: 1 – high-voltage power supply, 2 – oscilloscope, 3 – photo sensors, 4 – reactor, 5 – valve, 6 – vacuum gauge, 7 – vacuum pump, 8 – sampler valve.

Жүктеу (136KB)
3. Fig. 2. Dependences of the x–t diagrams of the flame path on the surface coating washed with: 1, 2 – boric acid; 35 – magnesium oxide.

Жүктеу (116KB)
4. Fig. 3. Oscillograms of chemiluminescence in experiment 1 (a) and 2 (b) in a reactor washed with H3BO3.

Жүктеу (332KB)
5. Fig. 4. Oscillograms of flame chemiluminescence over MgO: experiment 1 (a), 2 (b), 3 (c).

Жүктеу (489KB)
6. Fig. 5. Effect of surface treatment with boric acid on the x–t flame diagram in a stainless steel reactor. Curves (1–3) – before treatment, (4, 5) – after reactor surface treatment with boric acid.

Жүктеу (105KB)
7. Fig. 6. Effect of treating the stainless steel surface with a concentrated solution of boric acid on flame propagation. Black and light dots – before and after treating the surface with boric acid, respectively. Curve numbers indicate the sequence of experiments.

Жүктеу (155KB)
8. Fig. 7. Flame oscillograms in the first four sections of the reactor before surface treatment.

Жүктеу (180KB)
9. Fig. 8. Flame oscillograms in the first four reactor sections after surface treatment. The first four sections are 2.5 m of the reactor pipe. After the first shot, the flame front reaches the 4th sensor in 147 ms, after the third shot – in 134 ms, and after the fourth shot – in 139 ms.

Жүктеу (279KB)
10. Fig. 9. Scheme of participation of adsorbed atoms in regeneration of chain carriers. Designations: see text.

Жүктеу (101KB)
11. Fig. 10. Dependence of h of the detonating mixture on Po/P1 at 743 K in a quartz reactor, P1 = 12.6 Pa. Differently marked points are the results of measurements with different pumping systems (see text): 1 – calculation using formula (4), which does not take into account the heterogeneous development of chains; 2 – calculation taking into account reactions (IV)–(VII), (IX), (X) and (–I).

Жүктеу (106KB)

© Russian Academy of Sciences, 2025