Ionic and phase compositions of nanosized Y2.5Ce0.5Fe2.5Ga2.5O12 film on Gd3Ga5O12 substrate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The ionic and phase compositions of the nanosized Y2.5Ce0.5Fe2.5Ga2.5O12 ferrogarnet film obtained by double ion-beam deposition/sputtering on a Gd3Ga5O12 substrate were studied using X-ray diffraction analysis and X-ray photoelectron spectroscopy. The target for film production was obtained by gel combustion followed by annealing in vacuum. The X-ray diffraction results confirmed the phase homogeneity of Y2.5Ce0.5Fe2.5Ga2.5O12 both in powder and in films form and the absence of cerium dioxide impurity. At the same time, according to X-ray photoelectron spectroscopy, along with Ce3+, Ce4+ ions are present on the surface of the Y2.5Ce0.5Fe2.5Ga2.5O12 film.

Full Text

Restricted Access

About the authors

Yu. A. Teterin

Lomonosov Moscow State University; National Research Center “Kurchatov Institute”

Author for correspondence.
Email: ketsko@igic.ras.ru
Russian Federation, Moscow, 119991; Moscow, 123182

K. I. Maslakov

Lomonosov Moscow State University

Email: ketsko@igic.ras.ru
Russian Federation, Moscow, 119991

A. I. Serokurovа

Scientific and Practical Center on Materials Science, National Academy of Sciences of Belarus

Email: ketsko@igic.ras.ru
Belarus, Minsk, 220072

M. N. Smirnova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ketsko@igic.ras.ru
Russian Federation, Moscow, 199191

G. E. Nikiforova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ketsko@igic.ras.ru
Russian Federation, Moscow, 199191

N. N. Novitskiy

Scientific and Practical Center on Materials Science, National Academy of Sciences of Belarus

Email: ketsko@igic.ras.ru
Belarus, Minsk, 220072

S. A. Sharko

Scientific and Practical Center on Materials Science, National Academy of Sciences of Belarus

Email: ketsko@igic.ras.ru
Belarus, Minsk, 220072

A. Y. Teterin

Lomonosov Moscow State University

Email: ketsko@igic.ras.ru
Russian Federation, Moscow, 119991

M. N. Markelova

Lomonosov Moscow State University

Email: ketsko@igic.ras.ru
Russian Federation, Moscow, 119991

V. A. Amelichev

OOO “S-Innovations”

Email: ketsko@igic.ras.ru
Russian Federation, Moscow, 117246

V. A. Ketsko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: ketsko@igic.ras.ru
Russian Federation, Moscow, 199191

References

  1. Shen H., Zhao Yu, Lia L. et al. // J. Cryst. Growth. 2024. Р. 631. С. 127626. https://doi.org/10.1016/j.jcrysgro.2024.127626
  2. Звездин А.К., Котов В.А. / Современная магнитооптика и магнитооптические материалы Бока-Ратон: CRC Press, 1997. 404 с. https://doi.org/10.1887/075030362X
  3. Аплеснин С.С., Масюгин А.Н., Ситников М.Н. и др. // Письма в ЖЭТФ. 2020. Т. 112. № 10. С. 680. https://doi.org/10.31857/S1234567820220085
  4. Sharma V., Kuanr B.K. // J. Alloys Compd. 2018. V. 748. P. 591. https://doi.org/10.1016/j.jallcom.2018.03.086
  5. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 397 P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084
  6. Smirnova M.N., Glazkova I.S., Nikiforova G.E. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2021. V. 12. Is. 2. P. 210. https://doi.org/10.17586/2220-8054-2021-12-2-210-217
  7. Тетерин Ю.А., Смирнова М.Н., Маслаков К.И. и др. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 904. https://doi.org/10.31857/S0044457X23600135
  8. Смирнова М.Н., Копьева М.А., Береснев Э.Н. и др. // Журн. неорган. химии. 2018. Т. 63. С. 411. https://doi.org/10.7868/S0044457X18040037
  9. Smirnova M.N., Nikiforova G.E., Goeva L.V. et al. // Ceramics. 2019. V. 45. № 4. P. 4509. https://doi.org/10.1016/j.ceramint.2018.11.133
  10. Soboleva Ia.S., Nitsenko V.I., Sobolev A.V. et al. // Int. J. Mol. Sci. 2024. V. 25. № 3. P. 1437. https://doi.org/10.3390/ijms25031437
  11. Smirnova M.N., Nikiforova G.E., Kondrat'eva O.N. // Nanosystems: Physics, Chemistry, Mathematics. 2024. V. 15. № 2. P. 224. https://doi.org/10.17586/2220-8054-2024-15-2-224-232
  12. Maslakov K.I., Teterin Yu.A., Popel A.J. et al. // Appl. Surf. Sci. 2018. V. 448. P. 154. https://doi.org/10.1016/j.apsusc.2018.04.077
  13. Shirley D.A. // Phys. Rev. B. 1972. V. 5. P. 4709. https://doi.org/10.1103/PhysRevB.5.4709
  14. Панов А.П. Пакет программ обработки спектров SPRO и язык программирования SL: Препринт. М.: Ин-т атом. энергии, ИАЭ-6019/15, 1997. 31 с.
  15. Стогний А.И., Новицкий Н.Н., Голикова О.Л. и др. // Неорган. материалы. 2017. Т. 53. № 10. С. 1093. https://doi.org/10.7868/S0002337X17100116
  16. Sharko S.A., Serokurova A.I., Novitskii N.N. et al. // Ceramics. 2023. V. 6. № 3. P. 1415. https://doi.org/10.339/nano12030470
  17. Sosulnikov M.I., Teterin Yu.A. // J. Electron Spectrosc. Relat. Phenom. 1992. V.59. P. 111. https://doi.org/10.1016/0368-2048(92)85002-O
  18. Bagus P.S., Nelin C.J., Brundle C.R. et al. // J. Chem. Phys. 2021. V. 154. P. 094709. https://doi.org/10.1063/5.0039765
  19. Grosvenor A.P., Kobe B.A., Biesinger M.C., McIntyre N.S. // Surf. Interface Anal. 2004. V. 36. P. 1564. https://doi.org/10.1002/sia.1984
  20. Descostes M., Mercier F., Thromat N. et al. // Appl. Surf. Sci. 2000. V. 165. P. 288. https://doi.org/10.1016/S0169-4332(00)00443-8
  21. Teterin Yu.A., Perfil’ev Yu.D., Maslakov K.I. // J. Struct. Chem. 2022. V. 63. № 10. P. 1649. https://doi.org/10.1134/S0022476622100110
  22. Wendin G. Breakdown of the One-Electron Pictures in Photoelectron Spectra. Structure and Bonding, V. 45. Berlin, Heidelberg: Springer, 1981. 123 p. https://doi.org/10.1007/BFb0111504
  23. Van Vleck J.H. // Phys. Rev. 1934. V. 45. № 5. P. 405. https://doi.org/10.1103/PhysRev.45.405
  24. Yarzhemsky V.G., Teterin Y.A., Presnyakov I.A. // JETP Letters. 2020. V. 111. № 8. P. 422. https://doi.org/10.1134/S0021364020080135
  25. Teterin Yu.A., Bondarenko T.N., Teterin A.Yu. // J. Electron Spectrosc. Relat. Phenom. 1998. V. 96. P. 221. https://doi.org/10.1016/S0368-2048(98)00240-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Powder diffraction pattern of the YCFG sample.

Download (38KB)
3. Fig. 2. Diffraction pattern of the YCFG film on the single-crystal GGG (111) substrate.

Download (17KB)
4. Fig. 3. Surface image of the YCFG film with a thickness of ~80 nm and its cross section (in the inset).

Download (7KB)
5. Fig. 4. XPS spectrum of O1s electrons of the film: a - initial sample; b - after cleaning with Ar+ ions.

Download (27KB)
6. Fig. 5. XPS spectrum of Fe2p electrons of the film: a - initial sample; b - after cleaning with Ar+ ions.

Download (26KB)
7. Fig. 6. XPS spectra of Fe3s, Ga3p, and Ce4d electrons of the film: a - initial sample; b - after cleaning with Ar+ ions.

Download (32KB)
8. Fig. 7. XPS spectra of Ce3d electrons of the film: a - initial sample; b - after cleaning with Ar+ ions.

Download (48KB)

Copyright (c) 2025 Russian Academy of Sciences