Preparation of high-entropy layered double hydroxides with a hydrotalcite structure

Мұқаба

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

High-entropy hexacationic layered double hydroxides of the cationic composition MgNiCoAlFeY were obtained by five different methods: coprecipitation at constant pH, coprecipitation at constant or variable pH followed by hydrothermal treatment, microwave assisted solvothermal, hydrothermal, mechanochemical method followed by hydrothermal treatment. All samples, except for the one obtained by coprecipitation at variable pH, are phase pure, with a uniform distribution of cations. The samples were characterized by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, transmission electron microscopy. Thermal transformations of the samples were studied. The synthesis method affects the characteristics of the samples. The sample obtained by hydrothermal synthesis at variable pH possesses magnetic properties. The largest particles and those morphologically close to the hexagonal shape are formed by coprecipitation followed by hydrothermal treatment. The sample obtained by the microwave assisted solvothermal method is characterized by lower thermal stability.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Lebedeva

Belgorod State National Research University

Хат алмасуға жауапты Автор.
Email: olebedeva@bsu.edu.ru
Ресей, Belgorod, 308015

S. Golovin

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
Ресей, Belgorod, 308015

E. Seliverstov

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
Ресей, Belgorod, 308015

E. Tarasenko

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
Реюньон, Belgorod, 308015

O. Kokoshkina

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
Ресей, Belgorod, 308015

D. Smalchenko

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
Ресей, Belgorod, 308015

M. Yapryntsev

Belgorod State National Research University

Email: olebedeva@bsu.edu.ru
Ресей, Belgorod, 308015

Әдебиет тізімі

  1. Yeh J.-W. // JOM. 2013. V. 65. № 12. P. 1759. https://doi.org/10.1007/s11837-013-0761-6
  2. Yeh J.-W., Chen S.-K., Lin S.-J. et al. // Adv. Eng. Mater. 2004. V. 6. № 5. P. 299. https://doi.org/10.1002/adem.200300567
  3. Musicó B.L., Gilbert D., Ward T.Z. et al. // APL Mater. 2020. V. 8. № 4. P. 040912. https://doi.org/10.1063/5.0003149
  4. Teplonogova М.А., Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Inorg. Chem. 2022. V. 61. № 49. Р. 19817. https://doi.org/10.1021/acs.inorgchem.2c02950
  5. Cavani F., Trifirò F., Vaccari A. // Catal. Today. 1991. V. 11. № 2. Р. 173. https://doi.org/10.1016/0920-5861(91)80068-K
  6. Третьяков Ю.Д., Елисеев А.В., Лукашин А.В. // Успехи химии. 2004. Т. 73. № 9. С. 974.
  7. Mohapatra L., Parida K. // J. Mater. Chem. A. 2016. V. 4. № 28. P. 10744. https://doi.org/10.1039/C6TA01668E
  8. Zümreoglu-Karan B., Ay A.N. // Chem. Pap. 2012. V. 66. № 1. P. 1. https://doi.org/10.2478/s11696-011-0100-8
  9. Mishra G., Dash B., Pandey S. // Appl. Clay Sci. 2018. V. 153. P. 172. https://doi.org/10.1016/j.clay.2017.12.021
  10. Sonoyama N., Takagi K., Yoshida S. et al. // Appl. Clay Sci. 2020. V. 186. P. 105440. https://doi.org/10.1016/j.clay.2020.105440
  11. Patel R., Park J.T., Patel M. et al. // J. Mater. Chem. A. 2018. V. 6. № 1. P. 12. https://doi.org/10.1039/C7TA09370E
  12. Miura A., Ishiyama S., Kubo D. et al. // J. Ceram. Soc. Jpn. 2020. V. 128. № 7. P. 336. https://doi.org/10.2109/jcersj2.20001
  13. Gu K., Zhu X., Wang D. et al. // J. Energy Chem. 2021. V. 60. P. 121. https://doi.org/10.1016/j.jechem.2020.12.029
  14. Jing J., Liu W., Li T. et al. // Catalysts. 2024. V. 14. № 3. P. 171. https://doi.org/10.3390/catal14030171
  15. Junchuan Y., Wang F., He W. et al. // Chem. Commun. 2023. V. 59. P. 3719. https://doi.org/10.1039/D2CC06966K
  16. Hao M., Chen J., Chen J. et al. // J. Colloid Interface Sci. 2023. V. 642. P. 41. https://doi.org/10.1016/j.jcis.2023.03.152
  17. Nguyen T.X., Tsai C.-C., Nguyen V.T. et al. // Chem. Eng. J. 2023. V. 466. P. 143352. https://doi.org/10.1016/j.cej.2023.143352
  18. Wang F., Zou P., Zhang Y. et al. // Nat. Commun. 2023. V. 14. P. 6019. https://doi.org/10.1038/s41467-023-41706-8
  19. Ding Y., Wang Z., Liang Z. et al. // Adv. Mater. 2023. P. e2302860. https://doi.org/10.1002/adma.202302860
  20. Li S., Tong L., Peng Z. et al. // J. Mater. Chem. A. 2023. V. 11. P. 13697. https://doi.org/10.1039/D3TA01454A
  21. Wu H., Zhang J., Lu Q. et al. // ACS Appl. Mater. Interfaces. 2023. V. 15. № 32. P. 38423. https://doi.org/10.1021/acsami.3c05781
  22. Kim M., Oh I., Choi H. et al. // Cell Rep. Phys. Sci. 2022. V. 3. № 1. P. 100702. https://doi.org/10.1016/j.xcrp.2021.100702
  23. Zhu Z., Zhang Y., Kong D. et al. // Small. 2024. V. 20. P. 2307754. https://doi.org/10.1002/smll.202307754
  24. Knorpp A.J., Zawisza A., Huangfu S. et al. // RSC Adv. 2022. V. 12. № 40. Р. 26362. https://doi.org/10.1039/D2RA05435C
  25. Агафонов А.В., Шибаева В.Д., Краев А.С. и др. // Журн. неорган. химии. 2023. T. 68. № 1. С. 4.
  26. Leont’eva N.N., Drozdov V.D., Bel’skaya O.B., Cherepanova S.V. // Russ. J. Gen. Chem. 2020. V. 90. № 3. P. 509. https://doi.org/10.1134/S1070363220030275
  27. Benício L.P.F., Eulálio D., Guimarães L. de M. et al. // Mater. Res. 2018. V. 21 № 6. P. e20171004. https://doi.org/10.1590/1980-5373-MR-2017-1004
  28. Нестройная О.В., Рыльцова И.Г., Япрынцев М.Н., Лебедева О.Е. // Неорган. материалы. 2020. Т. 56. № 7. С. 788.
  29. Silambarasan M., Ramesh P.S., Geetha D., Venkatachalam V. // J. Mater. Sci.: Mater. Electron. 2017. V. 28. P. 6880. https://doi.org/10.1007/s10854-017-6388-6
  30. Rost C.M., Sachet E., Borman T. et al. // Nat. Commun. 2015. V. 6. P. 1. https://doi.org/10.1038/ncomms9485
  31. Dippo O.F., Vecchio K.S. // Scripta Mater. 2021. P. 113974. https://doi.org/10.1016/j.scriptamat.2021.113974

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Results of elemental mapping of the LDH-SG sample.

Жүктеу (105KB)
3. Fig. 2. Powder X-ray diffraction patterns of the LDH samples: 1 – LDH-S; 2 – LDH-SG; 3 – LDH-G; 4 – LDH-SM; 5 – LDH-M.

Жүктеу (1023KB)
4. Fig. 3. FTIR spectra of LDH: 1 – LDH-SG; 2 – LDH-SM; 3 – LDH-M; 4 – LDH-G; 5 – LDH-S.

Жүктеу (66KB)
5. Fig. 4. Raman spectra of the LDH samples: 1 – LDH-M; 2 – LDH-G; 3 – LDH-SM; 4 – LDH-SG; 5 – LDH-S.

Жүктеу (71KB)
6. Fig. 5. TEM micrographs: a – SDG-SM, b – SDG-G, c – SDG-SG, d – SDG-M, d – SDG-S.

Жүктеу (464KB)
7. Fig. 6. Powder X-ray diffraction patterns recorded at different temperatures: a – SDG-SM; b – SDG-M; c – SDG-G.

Жүктеу (356KB)

© Russian Academy of Sciences, 2025